The NetCDF Installation and Porting Guide

NetCDF Version 3.6.3
Last Updated 18 May 2008

Ed Hartnett, Russ Rew
Unidata Program Center

Copyright (©) 2005-2006 University Corporation for Atmospheric Research

Permission is granted to make and distribute verbatim copies of this manual provided that
the copyright notice and these paragraphs are preserved on all copies. The software and any
accompanying written materials are provided “as is” without warranty of any kind. UCAR
expressly disclaims all warranties of any kind, either expressed or implied, including but not
limited to the implied warranties of merchantability and fitness for a particular purpose.

The Unidata Program Center is managed by the University Corporation for Atmospheric
Research and sponsored by the National Science Foundation. Any opinions, findings, con-
clusions, or recommendations expressed in this publication are those of the author(s) and
do not necessarily reflect the views of the National Science Foundation.

Mention of any commercial company or product in this document does not constitute an
endorsement by the Unidata Program Center. Unidata does not authorize any use of
information from this publication for advertising or publicity purposes.

Table of Contents

1 Installing the NetCDF Binaries............... 1

2 Quick Instructions for Installing NetCDF on

UnNIX .o 3

3 Building and Installing NetCDF on Unix

Systems 5
3.1 Installation Requirements 5
3.2 Specifying the Environment for Building........................ 5
3.2.1 Variable Description Notes oo .. 6
3.3 Building on 64 Bit Platforms............. L. 7
3.4 Running the configure Script il 8
3.5 Running make 11
3.6 Testing the Build 11
3.7 Installing NetCDF 12
3.8 Platform Specific Notes i i 12
3.8 ALK 12
3.8.2 CygWin ..ottt 13
3.83 MInGW . . 13
3.8.4 HPUX ..o 14
B 20 T P 15
3.8.6 LinUX ...ttt 15
3.8.7 Macintosh......... o 15
3.8.8 OSF I ot 15
3.8.9 SunOS .. 15
3.8.10 Handling Fortran Compilers............................. 16
3.8.10.1 Intel Fortran............ .o i 16
3.8.10.2 Portland Group Fortran............................ 16
3.8.10.3 GNU Fortranoeiiiiiiiiiiiinan. 16
3.8.10.4 05 16
38100 e 17
3.9 Additional Porting Notes.couiiiiiiiiiiiii.. 17
3.10 Contributing to NetCDF Source Code Development 17
4 Building and Installing NetCDF on Windows
.. 19
4.1 Getting Prebuilt netedf.dll o 19
4.2 Installing the DLL ... o 19
4.3 Using netedf.dll with VC++ 6.0 20
4.4 Building netcdf.dll with VC++.NET 21
4.5 Using netedf.dll with VC++.NET 21

ii NetCDF Installation and Porting Guide

5 If Something Goes Wrong 23
5.1 The Usual Build Problems oL 23
5.1.1 Taking the Easy Way Out.............. ..., 23
5.1.2 How to Clean Up the Mess from a Failed Build........... 23
5.1.3 Platforms On Which NetCDF is Known to Work 23
5.1.4 Platforms On Which NetCDF is Reported to Work 23
5.1.5 If You Have a Broken Compiler........................... 24
5.1.6 What to Do If NetCDF Still Won’t Build................. 24
5.2 Troubleshooting........ ... i 24
5.2.1 Problems During Configuration........................... 24
5.2.2 Problems During Compilation 25
5.2.3 Problems During Testing..............cooiiiiiiiiia., 25
5.3 Finding Help On-line........ o i i, 25
5.4 Reporting Problems........o 26

Chapter 1: Installing the NetCDF Binaries 1

1 Installing the NetCDF Binaries

Perhaps the easiest way to get netCDF is to get a pre-built binary distribution. To get
them, see http://www.unidata.ucar.edu/software/netcdf/binaries.html.

To install the binary distribution, uncompress and unpack the tar file. You will end up
with 4 subdirectories, lib, include, man, and bin.

The lib subdirectory holds the netCDF libraries (C, Fortran, and C++). The include
directory holds the necessary netcdf.h file (for C), netedf.inc (for Fortran), netcdfcpp.h (for
C++), and the .mod files (for Fortran 90). The bin directory holds the ncgen and ncdump
utilities, and the man directory holds the netCDF documentation.

You can have these directories anywhere you like, and use netCDF. But when compiling
a netCDF program, you will have to tell the linker where to find the library (e.g. with the
-L option of most C compilers), and you will also have to tell the C pre-processor where to
find the include file (e.g. with the -I option).

If you are using shared libraries, you will also have to specify the library
location for run-time dynamic linking. See your compiler documentation. For
some general information see the netCDF FAQ “How do I use shared libraries” at
http://www.unidata.ucar.edu/software/netcdf/faq.html#using_shared_p.

http://www.unidata.ucar.edu/software/netcdf/binaries.html
http://www.unidata.ucar.edu/software/netcdf/faq.html#using_shared_p

NetCDF Installation and Porting Guide

Chapter 2: Quick Instructions for Installing NetCDF on Unix 3

2 Quick Instructions for Installing NetCDF on
Unix

Who has time to read long installation manuals these days?

To install netCDF, uncompress and unpack the tar file, then change to the distribution
directory:

gunzip netcdf-3.6.2.tar.gz
tar -xf netcdf-3.6.2.tar
cd netcdf-3.6.2

Now run the usual configure, make check, make install cycle:

./configure
make check
make install

The configure script will try to find necessary tools in your path. When you run config-
ure you may optionally use the —prefix argument to change the default installation direc-
tory. For example, the following will install the library in /usr/local/lib, the header file in
/usr /local /include, and the utilities in /usr/local/bin.

./configure --prefix=/usr/local

The default install root is /usr/local (so there’s no need to use the prefix argument if
you want the software installed there).

By default the netCDF configuration will build static libraries only. For shared libraries
as well, use the —enable-shared option to configure.

If all this doesn’t work, then you might have to read the next chapter. Better luck next
time!

NetCDF Installation and Porting Guide

Chapter 3: Building and Installing NetCDF on Unix Systems 5)

3 Building and Installing NetCDF on Unix
Systems

The latest version of this document is available at http://www.unidata.ucar.edu/software/netcdf/docs/ne

This document contains instructions for building and installing the netCDF package from
source on various platforms. Prebuilt binary releases are (or soon will be) available for var-
ious platforms from http://www.unidata.ucar.edu/software/netcdf/binaries.html.

3.1 Installation Requirements

Depending on the platform, you may need up to 25 Mbytes of free space to unpack, build,
and run the tests. You will also need a Standard C compiler. If you have compilers for
FORTRAN 77, FORTRAN 90, or C++, the corresponding netCDF language interfaces may
also be built and tested. Compilers and associated tools will only be found if they are in
your path, or if you specify the path and compiler in the appropriate environment variable.
(Example for csh: setenv CC=/some/directory/cc).

If you want to run the large file tests, you will need about 13 GB of free disk space, as
some very large files are created. The created files are immediately deleted after the tests
complete. These large file tests are not run as part of the normal “make check” step; they
are only run if you use the —enable-large-file-tests option with configure.

If you wish to build from source on a Windows (Win32) platform, different instructions
apply. See Chapter 4 [Windows|, page 19.

3.2 Specifying the Environment for Building

The netCDF configure script searches your path to find the compilers, tools, and settings
it needs to build netCDF. If you wish to change the default choices of the configure script,
you may do so by setting environment variables.

Environment variables are a feature of Unix shells, and each shell may handle them in a
slightly different manner. (To see which shell you are using, type: echo $SHELL).

For users of the C-shell (csh) and derived shells, use the setenv command to set environ-
ment variables. For the Bourne shell (sh), use the export command to set an environment
variable.

For example, to use compilers that can’t be found in your path, set the appropriate CC,
CXX, F77, or F90 environment variables. In the Bourne shell:

export CC=/some/strange/place/cc
export F77=/some/strange/place/f77
./configure

make check

To accomplish the same thing from the C-shell:

setenv CC /some/strange/place/cc
setenv F77 /some/strange/place/f77
./configure

make check

When searching for compilers the configure script will prefer vendor compilers to GNU
compilers. Its not because we don’t like GNU, but because we assume if you purchased a

http://www.unidata.ucar.edu/software/netcdf/docs/netcdf-install
http://www.unidata.ucar.edu/software/netcdf/binaries.html

6 NetCDF Installation and Porting Guide

compiler, you want to use it. Setting CC allows you to over-ride this preference. (Alterna-
tively, you could temporarily remove the compiler’s directories from your PATH.)

For example, on an AIX system, configure will first search for xlc, the AIX compiler. If
not found, it will try gee, the GNU compiler. To override this behavior, set CC to gee (in
sh: export CC=gcc). (But don’t forget to also set CXX to g++, or else configure will try
and use x1C, the AIX C++ compiler to build the netCDF C++ API.)

By default, the netCDF library is built with assertions turned on. If you wish to turn
off assertions, set CPPFLAGS to -DNDEBUG (csh ex: setenv CPPFLAGS -DNDEBUG).

If GNU compilers are used, the configure script sets CPPFLAGS to “-g -O2”. If this is
not desired, set CPPFLAGS to nothing, or to whatever other value you wish to use, before
running configure.

3.2.1 Variable Description Notes

CC C compiler If you don’t specify this, the configure script will try
to find a suitable C compiler such as cc, ¢89, xlc, or
gec.

FC Fortran If you don’t specify this, the configure script will try

compiler (if to find a suitable Fortran 90 or Fortran 77 compiler.
any) Set FC to "" explicitly, or provide the —disable-f77

option to configure, if no Fortran interface is desired.

F90 Fortran 90 If you don’t specify this, the configure script will try
compiler (if to find a suitable Fortran 90 compiler. Not needed if
any) FC specifies a Fortran 90 compiler. Set F90 to "" ex-

plicitly, or use the —disable-f90 option to configure, if
no Fortran 90 interface is desired. For a vendor F90
compiler, make sure you’re using the same vendor’s
F77 compiler. Using Fortran compilers from differ-
ent vendors, or mixing vendor compilers with g77,
the GNU F77 compiler, is not supported and may
not work.

CXX C++ compiler If you don’t specify this, the configure script will
try to find a suitable C++ compiler. Set CXX to ""
explicitly, or use the —disable-cxx configure option,
if no C++ interface is desired. If using a vendor C++
compiler, use that vendor’s C compiler to compile
the C interface. Using different vendor compilers for
C and C++ may not work.

Chapter 3: Building and Installing NetCDF on Unix Systems 7

CFLAGS

CPPFLAGS

FFLAGS

F90FLAGS

CXXFLAGS

ARFLAGS,
NMFLAGS,

FPP, M4FLAGS,
LIBS, FLIBS,
FLDFLAGS

C compiler
flags

C preprocessor
options

Fortran
compiler flags

Fortran 90
compiler flags

C++ compiler
flags
Miscellaneous

"-O" or "-g", for example. If you don’t set this,
configure may set it based on your platform’s needs
(unless you have used the —disable-flag-setting op-
tion is used with configure).

"-DNDEBUG" to omit assertion checks, for exam-
ple. If you don’t set this, configure may set it based
on your platform’s needs (unless you have used the
—disable-flag-setting option is used with configure).

"-O" or "-g", for example. If you don’t set this,
configure may set it based on your platform’s needs
(unless you have used the —disable-flag-setting op-
tion is used with configure).

"-O" or "-g", for example. If you don’t specify this,
the value of FFLAGS will be used. Configure may
set it based on your platform’s needs (unless you
have used the —disable-flag-setting option is used
with configure).

"-O" or "-g", for example. If you don’t set this,
configure may set it based on your platform’s needs
(unless you have used the —disable-flag-setting op-
tion is used with configure).

One or more of these were needed for some platforms,
as specified below. Unless specified, you should not
set these environment variables, because that may
interfere with the configure script.

The section marked Tested Systems below contains a list of systems on which we have
built this package, the environment variable settings we used, and additional commentary.

3.3 Building on 64 Bit Platforms

Some platforms support special options to build in 64-bit mode.

NetCDF 3.6.3 has been tested as 64-bit builds on SunOS, Irix, and AIX. The options
needed to build in 64-bit mode on these platforms are described below.

AIX

Set -q64 option in all compilers, and set NMFLAGS to -X64, and ARFLAGS

to -X64 cru’. Alternatively, set environment variable OBJECT_MODE to 64

before running configure.

IRIX
Sun0S

Use the -xarch=v9 flag on all compilers.

platform.

Set the -64 option in all compilers.

This is not supported on the x86

8 NetCDF Installation and Porting Guide

3.4 Running the configure Script

To create the Makefiles needed to build netCDF, you must run the provided configure script.
Go to the top-level netCDF directory.

Decide where you want to install this package. Use this for the "—prefix=" argument to
the configure script below. The default installation prefix is “/usr/local,” which will install
the package’s files in usr/local/bin, usr/local/lib, and usr/local/man. The default can be
overridden with the —prefix argument to configure.

(Note that this is a new default location for version 3.6.2 of netCDF. Previous versions
used the directory in which netCDF was built as the default install directory).

Here’s how to execute the configure script with a different installation directory:
./configure --prefix=/whatever/you/decided

The above would cause the netCDF libraries to be installed in /what-
ever/you/decided/lib, the header files in /whatever/you/decided/include, the
utilities (ncdump/ncgen) in /whatever/you/decided/bin, and the man pages in
/whatever/you/decided /man.

There are other options for the configure script. The most useful ones are listed below.
Use the —help option to get the full list.

—--prefix Specify the directory under which netCDF will be installed. Subdirectories lib,
bin, include, and man will be created there, if they don’t already exist.

-—enable-shared
Build shared libraries (as well as static) on platforms which support them.

-—enable-docs-install
If this option is used, the netCDF distribution will install all documentation.
NetCDF documents are provided in PDF, HTML, postscript, info, and ASCII
text.

You can change the directory that documents are installed to. Run ./configure
—help for more information.

The this option does not affect the netCDF man pages, which are always in-
stalled. This option applies only to the texinfo documentation files in the man
directory (netcdf.texi, netcdf-c.texi, and so on).

The latest documentation is also available on-line at the the netCDF website.
http://www.unidata.ucar.edu/software/netcdf.

Installing the documentation does not cause the documentation to be built from
source; it causes the documentation which was shipped with the distribution to
be installed.

Users who wish to contribute to the documentation development are urged to
make any suggested changes to the documentation source files, which have the
.texi filename extension (netcdf.text, netcdf-c.texi, etc.). Building the netCDF
documentation from source requires recent versions of the open-source tools
sed, m4, texinfo, and tex.

-—-disable-flag-setting
By default the configure script may change some compiler flags to allow netCDF
to build on your platform. If you wish to specify compiler flags which conflict

http://www.unidata.ucar.edu/software/netcdf

Chapter 3: Building and Installing NetCDF on Unix Systems 9

with the ones added by the configure script, then use this option to instruct
configure not to attempt to set any compiler flags. It is then the responsibility
of the user to correctly set CPPFLAGS, CFLAGS, etc. (Note that this flag
does not affect some setting of flags by configure for GNU platforms; it just
turns off any special netCDF flags).

--disable-largefile
This omits OS support for large files (i.e. files larger than 2 GB).

--disable-£f77
This turns off building of the F77 and F90 APIs. (The F90 API cannot be built
without the F77 API). This also disables some of the configure tests that relate
to fortran, including the test of the F90 compiler. Setting the environment
variables FC or F77 to NULL will have the same effect as —disable-f77.

--disable-£90
This turns off the building of the F90 API. Setting the environment variable
F90 to null for configure will have the same effect.

--disable-cxx
This turns off the building of the C++ API. Setting the environment variable
CXX to null for configure will have the same effect.

--disable-v2
This turns of the V2 API. The V2 API is completely replaced with the V3 API,
but is usually built with netCDF for backwards compatibility, and also because
the C++ API depends on the V2 API. Setting this has the effect of automatically
turning of the CXX API, as if —disable-cxx had also been specified.

--disable-utilities
This turns off the building (and testing) of the netCDF utilities ncgen and
ncdump. This option is helpful when debugging library build problems, but
probably not of much use to the average user.

--enable-c-only
This turns off the building (and testing) of everything except the core netCDF-
3 C library. This option is helpful when debugging library build problems, but
probably not of much use to the average user.

--enable-large-file-tests
Turn on tests for large files. These tests create files over 2 GB in size, and
need about 13 GB of free disk space to run. These files are deleted after
the test successfully completes. They will be created in the netCDF nc_test
directory, unless the —with-temp-large option is used to specify another location
(see below).

--with-temp-large
Normally large files are not created during the netCDF build, but they will
be if —enable-large-file-tests is specified (see above). In that case, this config-
ure parameter can be used to specify a location to create these large files, for
example: —with-large-files=/tmp/ed.

10 NetCDF Installation and Porting Guide

--disable-fortran-compiler-check
Normally the netCDF configure checks the F77 and F90 compilers with small
test programs to see if they work. This is very helpful in supporting netCDF
installations on different machines, but won’t work with cross-compilation. Use
the —disable-fortran-compiler-check to turn off the fortran compiler tests, and
just assume that the compilers will work.

--disable-fortran-type-check
Normally configure checks the size of fortran types. This option turns off those
tests, and uses default values.

--disable-compiler-recover

Normally, if the netCDF configure finds a F90 compiler, and it fails to build the
test program described in —disable-f90-check, it will print a warning, and then
continue to build without the FO0 API, as if the user has specified —disable-
f90. With the —disable-compiler-recover option set, it will not continue, but will
just stop if the fortran 90 compiler doesn’t work. This is useful for automatic
testing, where we want the tests to fail if something causes the fortran compiler
to break.

--disable-examples
Starting with version 3.6.2, netCDF comes with some examples in the “exam-
ples” directory. By default, the examples are all built during a “make check”
unless the —disable-examples option is provided. Note that the examples are not
built for “make install”, just for “make check”. As far as netCDF is concerned,
the examples are extra tests.

--enable-separate-fortran
This will cause the Fortran 77 and Fortran 90 APIs to be built into their own
separate library, instead of being included in the C library. This is useful for
supporting more than one fortran compiler with the same netCDF C library.
This is turned on by default for shared library builds.

-—disable-extreme-numbers

In some netCDF test programs (nc_test.c and nf_test.F') there are tests which
use numbers at or just beyond the extreme number that can be used for a type.
(For example, using MAX_INT + 1 as an int type). This causes problems on
Solaris 386 systems. For that reason, the extreme numbers are not used, by
default, on Solaris 386 systems. This option gives the user control to override
the default. This affects only netCDF test programs, not the netCDF library
itself.

The configure script will examine your computer system — checking for attributes that
are relevant to building the netCDF package. It will print to standard output the checks
that it makes and the results that it finds.

The configure script will also create the file "config.log", which will contain error mes-
sages from the utilities that the configure script uses in examining the attributes of your
system. Because such an examination can result in errors, it is expected that "config.log"
will contain error messages. Therefore, such messages do not necessarily indicate a problem
(a better indicator would be failure of the subsequent "make"). One exception, however, is

Chapter 3: Building and Installing NetCDF on Unix Systems 11

an error message in "config.log" that indicates that a compiler could not be started. This
indicates a severe problem in your compilation environment — one that you must fix.

3.5 Running make

Run "make". This will build one or more netCDF libraries. It will build the basic netCDF
library libnetcdf.a. If you have Fortran 77 or Fortran 90 compilers, then the Fortran library
will also be built (libnetcdff.a). If you have a C++ compiler, then the C++ interface will be
built (libnetcdf_c++.a.)

A “make” will also build the netCDF utilities ncgen(1) and ncdump(1).
Run make like this:

make

3.6 Testing the Build

Run “make check” to verify that the netCDF library and executables have been built
properly (you can instead run “make test” which does the same thing).

A make check will build and run various test programs that test the C, Fortran, and
C++ interfaces as well as the "ncdump" and "ncgen" utility programs.

Lines in the output beginning with "***" report on success or failure of the tests; any

failures will be reported before halting the test. Compiler and linker warnings during the
testing may be ignored.

Run the tests like this:
make check

If you plan to use the 64-bit offset format (introduced in version 3.6.0) to create very
large files (i.e. larger than 2 GB), you should probably specify the —enable-large-file-tests
to configure, which tests the large file features. You must have 13 GB of free disk space for
these tests to successfully run.

If you are running the large file tests, you may wish to use the —with-temp-large option
to specify a temporary directory for the large files. (You may also set the environment
variable TEMP_LARGE before running configure).

The default is to create the large files in the nc_test subdirectory of the netCDF build.
Run the large file tests like this:

./configure --enable-large-file-tests --with-temp-large=/home/ed/tmp
make check

All of the large files are removed on successful completion of tests. If the test fails, you
may wish to make sure that no large files have been left around.

If any of the the large file tests test fail, check to ensure that your file system can handle
files larger than 2 GiB by running the following command:

dd if=/dev/zero bs=1000000 count=3000 of=$(TEMP_LARGE)/largefile

If your system does not have a /dev/zero, this test will fail. Then you need to find some
other way to create a file larger than 2 GiB to ensure that your system can handle them.

See Chapter 5 [If Something Goes Wrong]|, page 23.

12 NetCDF Installation and Porting Guide

3.7 Installing NetCDF

To install the libraries and executables, run "make install". This will install to the directory
specified in the configure step.

Run the installation like this:
make install

The install will put files in the following subdirectories of the directory you provided as
a prefix, creating the subdirectories if needed:

lib Libraries will be installed here. If static libraries are built, without separate
fortran libraries, then libnetcdf.a and libnetcdf.la will be installed. If the C++
API is built, libnetcdf_c++.a and libnetcdf_c++.la will be added. If separate
fortran libraries are built, libnetcdff.a and libnetcdff.la will also be added.

Static library users should ignore the .la files, and link to the .a files.
Shared library builds will add some .so files to this directory, as well.

include Header files will be installed here. The C library header file is netcdf.h. If the
C++ library is built, ntedfcpp.h, ncvalues.h and netcdf.hh will be installed here.
If the F77 API is built, netedf.inc will be copied here. If the F90 API is built,
the netcdf.mod and typesizes.mod files will be copied here as well.

bin Utilities ncdump and ncgen will be installed here.

man The ncdump/ncgen man pages will be installed in subdirectory manl, and the
three man pages netcdf.3, netcdf_f77.3, and netcdf_f90.3 will be installed in the
man3 subdirectory.

share If the configure is called with the —enable-install-docs option, the netCDF doc-
umentation set will be built, and will be installed under the share directory,
under the netcdf subdirectory. This will include postscript, PDF, info and
text versions of all netCDF manuals. These manuals are also available at the
netCDF web site.

Try linking your applications. Let us know if you have problems (see Section 5.4 [Re-
porting Problems], page 26).

3.8 Platform Specific Notes

The following platform-specific note may be helpful when building and installing netCDF.
Consult your vendor manuals for information about the options listed here. Compilers can
change from version to version; the following information may not apply to your platform.

Full output from some of the platforms of the test platforms for netCDF 3.6.3 can be
found at http://www.unidata.ucar.edu/software/netcdf/builds.

3.8.1 AIX

We found the vendor compilers in /usr/vac/bin, and included this in our PATH. Compilers
were xlc, xIf, x1f90, xI1C.

The F90 compiler requires the gsuffix option to believe that F90 code files can end with
.£90. This is automatically turned on by configure when needed (we hope):

http://www.unidata.ucar.edu/software/netcdf/builds

Chapter 3: Building and Installing NetCDF on Unix Systems 13

FOOFLAGS=-qsuffix=f=£90
We had to use xIf for F77 code, and x1f90 for F90 code.

To compile 64-bit code, set the correct environment variables for your platform (docu-
mented below).

The environment variable OBJECT_MODE can be set to 64, or use the -q64 option on
all AIX compilers by setting CFLAGS, FFLAGS, and CXXFLAGS to -q64.

The following is also necessary on an IBM AIX SP system for 64-bit mode:

ARFLAGS=’-X64 cru’
NMFLAGS=’-X64"

There are thread-safe versions of the AIX compilers. For example, xlc_r is the thread-
safe C compiler. The NetCDF configure script ignores these compilers. To use thread-safe
compilers, override the configure script by setting CC to xlc_r; similarly for FC and CXX.

For large file support, AIX requires that the macro _.LARGE_FILES be defined. The
configure script does this using AC_SYS_LARGEFILES. Unfortunately, this misfires when
OBJECT_MODE is 64, or the q64 option is used. The netCDF tries to fix this by turning
on _LARGE_FILES anyway in these cases.

The GNU C compiler does not mix successfully with the AIX fortran compilers.

3.8.2 Cygwin

Cygwin is a Linux-like environment for Windows. NetCDF builds under Cygwin
tools on Windows just as with Linux. For more information see the Cygwin web site:
http://www.cygwin. com.

Building under Cygwin will yield a DLL on windows (as long as —enable-shared is used
with configure). However this DLL will not work without the Cygwin POSIX emulation
DLL as well. For a stand-alone DLL, use MinGW (below).

3.8.3 MinGW

MinGW, or Minimalist GNU for Windows, is a set of GNU Unix tools ported to Windows.
The NetCDF C and Fortran APIs builds under MinGW tools on Windows just as with
Linux.

Those diving into netCDF and MinGW should be familiar with the in-
formation at the web page “Different Ways of Building Woe32 DLLs”
at: http://www.haible.de/bruno/woe32d1l.html, the MinGW FAQ at:
http://wuw.mingw.org/mingwfaq.shtml, and the peculiarities of the win32 environment
as explained by this helpful Red Hat document at: http://www.redhat.com/docs/manuals/enterprise/RHEL

The netCDF C++ API does not (yet) build DLLs cleanly under MinGW. Any knowl-
edgeable user who can make this work should send results to the netCDF support email
address: support@unidata.ucar.edu.

Using MinGW it is possible to produce stand-alone windows DLLs. First build netCDF
in the usual way, with —enable-shared and —enable-dll as configure options.

This builds the DLL for compatibility with g77. Set FC to the command line invoca-
tion of your fortran compiler. To build for other fortran compilers (i.e. ones you don’t
have), change the config.h file to select another fortran and recompile (without rerunning
configure).

http://www.cygwin.com
http://www.haible.de/bruno/woe32dll.html
http://www.mingw.org/mingwfaq.shtml
http://www.redhat.com/docs/manuals/enterprise/RHEL-4-Manual/gnu-linker/win32.html

14 NetCDF Installation and Porting Guide

The fortran tests will not, of course, work for these other fortrans, because you don’t
have the compiler to compile the test program!

FC=g77 ./configure --enable-dll --disable-cxx --enable-shared
make check

Due to the magic of libtool, the output files are found in the libsrc/.libs directory.

To get a MS compatible export library, open an MS DOS window, change directory to
libsre/.libs and run the following command:

1ib /machine:i386 /def:libnetcdf.def

The above command uses the Microsoft LIB tool, which comes with Visual C++ NET,
and perhaps other Microsoft development tools. (To get this in my path, I open the “Visual
Studio 2003 Command Prompt” in my Windows program menu.)

This command creates the .lib file, the import library, needed (or at least used) by
MicroSoft (and other) build environments on Windows.

For more information about MinGW, see the MinGW web site: http://www.mingw.org.
For more information about producing stand-alone windows DLLs with MinGW, see the
MinGW FAQ: http://www.mingw.org/mingwfaq.shtml.

3.8.4 HPUX

For the ¢89 compiler to work, CPPFLAGS must include -D_HPUX_SOURCE. This isn’t
required for the cc compiler.

Our HPUX machine has two C compilers. Only the one in /opt/ansic/bin/ works for
netCDF.

For large file support, HP-UX requires _FILE_OFFSET_BITS=64. The configure script
sets this automatically.

The HPUX C++ compiler (on our machine) doesn’t work on netCDF code. It’s too old
for that. So either use GNU to compile netCDF, or skip the C++ code by setting CXX to
” (in csh: setenv CXX ”), or using the —disable-cxx option.

Building a 64 bit version may be possible with the following settings:

CC=/bin/cc

CPPFLAGS=’-D_HPUX_SOURCE -D_FILE_OFFSET_BITS=64’ # large file support
CFLAGS=’-g +DD64’ # 64-bit mode
FC=/opt/fortran90/bin/£90 # Fortran-90 compiler
FFLAGS=’-w +noppu +DA2.0W’ # 64-bit mode, no "_" suffixes
FLIBS=-1U77

CXX="> # no 64-bit mode C++ compiler

Sometimes quotas or configuration causes HPUX disks to be limited to 2 GiB files. In
this cases, netCDF cannot create very large files. Rather confusingly, HPUX returns a
system error that indicates that a value is too large to be stored in a type. This may
cause scientists to earnestly check for attempts to write floats or doubles that are too large.
In fact, the problem seems to be an internal integer problem, when the netCDF library
attempts to read beyond the 2 GiB boundary. To add to the confusion, the boundary for
netCDF is slightly less than 2 GiB, since netCDF uses buffered I/O to improve performance.

http://www.mingw.org
http://www.mingw.org/mingwfaq.shtml

Chapter 3: Building and Installing NetCDF on Unix Systems 15

3.8.5 Irix
A 64-bit version can be built by settin the appropriate environment variables.
Set CFLAGS, FCFLAGS, FFLAGS, and CXXFLAGS to -64.

On our machine, there is a /bin/cc and a /usr/bin/cc, and the -64 option only works
with the former.

3.8.6 Linux
The f2cFortran flag is turned on by the configure script when GNU fortran is used.
CPPFLAGS=-Df2cFortran
For Portland Group Fortran, set pgiFortran instead:
CPPFLAGS=-DpgiFortran
Portland Group F90/F95 does not mix with GNU g77.

The netCDF configure script should notice which fortran compiler is being used, and set
these automatically.

For large file support, _.FILE_OFFSET_BITS must be set to 64. The netCDF configure
script should set this automatically.

3.8.7 Macintosh
The f2cFortran flag is required with GNU fortran (CPPFLAGS=-Df2cFortran). The
NetCDF configure script should and set this automatically.

For IBM compilers on the Mac, the following may work (we lack this test environment):

CC=/usr/bin/cc
CPPFLAGS=-DIBMR2Fortran
FC=x1f

F90=x1f90
FI90FLAGS=-qsuffix=cpp=£90

For the g95 compiler, you must set LIBS to -1SystemStubs before running configure.

3.8.8 OSF1
NetCDF builds out of the box on OSF1.

3.8.9 SunOS
PATH should contain /usr/ccs/bin to find make, nm, ar, etc.

For large file support, _-FILE_OFFSET_BITS must be 64. Configure will turn this on
automatically.

Large file support doesn’t work with ¢89, unless the -Xa option is used. The netCDF
configure script turns this on automatically where appropriate.

To compile in 64-bit mode, set -xarch=v9 on all compilers (i.e. in CFLAGS, FFLAGS,
and CXXFLAGS).

When compiling with GNU Fortran (g77), the -Df2cFortran flag is required for the
Fortran interface to work. The NetCDF configure script turns this on automatically if
needed.

16 NetCDF Installation and Porting Guide

3.8.10 Handling Fortran Compilers

The first thing to try is to set nothing and see if the netCDF configure script finds your
fortran compiler, and sets the correct flags automatically.

If it doesn’t find the correct fortran compiler, you can next try setting the FC environ-
ment variable to the compiler you wish to use, and then see if the configure script can set
the correct flags for that compiler.

If all that fails, you must set the flags yourself.

3.8.10.1 Intel Fortran

Intel has provided a helpful web page on “Building netCDF with the Intel compilers” at
http://www.intel.com/support/performancetools/sb/CS-027812.htm, providing con-
figuration and set-up information, and instructions for building netCDF on Linux and Mac
OS.

As an alternative, netCDF can be built successfully with CPPFLAGS set to pgiFortran.
Configure can handle this automatically if your fortran compiler is named “ifort.”

3.8.10.2 Portland Group Fortran

The Portland Group fortran compiler requires that netCDF be built with the pgiFortran
flag. It will be automatically turned on by configure if your fortran compiler is named
“pef90.”
The Portland Group also has a “PGI Guide to NetCDF” at http://www.pgroup.com/resources/netcdf/n
pgi71.htm.

3.8.10.3 GNU Fortran

The GNU Fortran 77 compiler (g77) requires that netCDF be built with the f2cFortran
flag. This is turned on automatically by configure. Since g77 can’t build Fortran 90 code,
the F90 API will not be built if g77 is the only available fortran compiler.

The version 4 series of gcc, the GNU Compiler Collection, offers a F95 compiler, usually
called gfortran. NetCDF requires the pgiFortran flag to build with gfortran, and this is
turned on automatically by configure.

3.8.10.4 g95

295 is a Fortran 95 compiler which is different from the Free Software Foundation’s gfortran.
The netCDF configure script sets the f2cFortran flag when g95 is used.
Some g95 users recommend instead setting the following, which handles the underscores
differently, and reportedly works better when integrating with other packages or libraries:
CC=gcc
FC=g95
CPPFLAGS=-DpgiFortran
FFLAGS=-fno-second-underscore
FCFLAGS=-fno-second-underscore
If this approach is taken, all fortran programs which use netCDF must be compiled with
the -fno-second-underscore flag.
One the Macintosh, g95 requires environment variables LIBS and FLIBS to be set to
-ISystemStubs.

http://www.intel.com/support/performancetools/sb/CS-027812.htm
http://www.pgroup.com/resources/netcdf/netcdf362_pgi71.htm
http://www.pgroup.com/resources/netcdf/netcdf362_pgi71.htm

Chapter 3: Building and Installing NetCDF on Unix Systems 17

3.8.10.5 g++

Older versions of the GNU C++ compiler don’t handle large files well. A version 3.2 instal-
lation of g++ fails to build for me without —disable-largefile. This turns off the ability of
netCDF to handle files larger than about 2 GiBytes. Users should upgrade their g++, or
learn to live with small files.

3.9 Additional Porting Notes

The configure and build system should work on any system which has a modern "sh" shell,
"make", and so on. The configure and build system is less portable than the "C" code
itself, however. You may run into problems with the "include" syntax in the Makefiles.
You can use GNU make to overcome this, or simply manually include the specified files
after running configure.

Instruction for building netCDF on other platforms can be found at
http://www.unidata.ucar.edu/software/netcdf/other-builds.html. If you
build netCDF on a new platform, please send your environment variables and any other
important notes to support@unidata.ucar.edu and we will add the information to the other
builds page, with a credit to you.

If you can’t run the configure script, you will need to create config.h and
fortran/nfconfig.inc. Start with ncconfig.in and fortran/nfconfig.in and set the defines as
appropriate for your system.

Operating system dependency is isolated in the "ncio" module. We provide two versions.
posixio.c uses POSIX system calls like "open()", "read()" and "write(). ffio.c uses a special
library available on CRAY systems. You could create other versions for different operating
systems. The program "t_ncio.c" can be used as a simple test of this layer.

Note that we have not had a Cray to test on for some time. In particular, large file
support is not tested with ffio.c.

Numerical representation dependency is isolated in the "ncx" module. As supplied,
ncex.m4 (nex.c) supports IEEE floating point representation, VAX floating point, and CRAY
floating point. BIG_ENDIAN vs LITTLE_ENDIAN is handled, as well as various sizes of
"int", "short", and "long". We assume, however, that a "char" is eight bits.

There is a separate implementation of the ncx interface available as ncx_cray.c which
contains optimizations for CRAY vector architectures. Move the generic ncx.c out of the
way and rename ncx_cray.c to ncx.c to use this module. By default, this module does not
use the IEG2CRAY and CRAY2IEG library calls. When compiled with aggressive in-lining
and optimization, it provides equivalent functionality with comparable speed and clearer
error semantics. If you wish to use the IEG library functions, compile this module with
-DUSE_IEG.

3.10 Contributing to NetCDF Source Code Development

Most users will not be interested in working directly with the netCDF source code. Rather,
they will write programs which call netCDF functions, and delve no further. However some
intrepid users may wish to dig into the netCDF code to study it, to try and spot bugs, or
to make modifications for their own purposes.

http://www.unidata.ucar.edu/software/netcdf/other-builds.html

18 NetCDF Installation and Porting Guide

To work with the netCDF source code, several extra utilities are required to fully build
everything from source. If you are going to modify the netCDF source code, you will need
some or all of the following Unix tools.

m4 Macro processing language used heavily in libsrc, nc_test. Generates (in these
cases) C code from m4 source. Version 1.4 works fine with release 3.5.1 through
3.6.2.

flex and yacc
Used in ncgen directory to parse CDL files. Generates C files from .y and .1 files.
You only need to use this to modify ncgen’s understanding of CDL grammar.

makeinfo Generates all documentation formats (except man pages) from texinfo source.
I'm using makeinfo version 4.8, as of release 3.6.2. If you have trouble with
makeinfo, upgrade to this version and try again. You only need makeinfo if you
want to modify the documentation.

tex Knuth’s venerable typesetting system. The version I am running (for netCDF
release 3.6.2) is TeX 3.141592 (Web2C 7.5.4). I have found that some recent
installations of TeX will not build the netCDF documentation - it’s not clear
to me why.

The user generally will just want to download the latest version of netCDF docu-
ments at the netCDF website. http://www.unidata.ucar.edu/software/netcdf/docs.

autoconf Generates the configure script. Version 2.59 or later is required.

automake Since version 3.6.2 of netCDF, automake is used to generate the Makefile.in
files needed by the configure script to build the Makefiles.

libtool Since version 3.6.2 of netCDF, libtool is used to help generate shared libraries
platforms which support them. Version 2.1a of libtool is required.

sed This text processing tool is used to process some of the netCDF examples before
they are included in the tutorial. This is only needed to build the documenta-
tion, which the user generally will not need to do.

NetCDF has a large and enterprising user community, and a long history of accepting
user modifications into the netCDF code base. Examples include the 64-bit offset format,
and the F90 API.

All suggested changes and additions to netCDF code can be sent to sup-
port@unidata.ucar.edu.

http://www.unidata.ucar.edu/software/netcdf/docs

Chapter 4: Building and Installing NetCDF on Windows 19

4 Building and Installing NetCDF on Windows

NetCDEF can be built and used from a variety of development environments on Windows.
The netCDF library is implemented as a Windows dynamic link library (DLL). The simplest
way to get started with netCDF under Windows is to download the pre-built DLL from the
Unidata web site.

Building under the Cygwin port of GNU tools is treated as a Unix install. See Section 3.8
[Platform Specific Notes|, page 12.

Instructions are also given for building the netCDF DLL from the source code using
Microsoft’s Visual Studio and VC++.NET.

VC++ documentation being so voluminous, finding the right information can be a chore.
There’s a good discussion of using DLLs called “About Dynamic-Link Libraries” at (per-
haps) http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dllproc/base/dynamic_
link_libraries.asp.

From the .NET point of view, the netCDF dll is unmanaged code. As a starting point,
see the help topic “Consuming Unmanaged DLL Functions” which may be found at
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconConsumin
unless the page has been moved.

4.1 Getting Prebuilt netcdf.dll

We have pre-built Win32 binary versions of the netcdf dll and static library, as

well as ncgen.exe and ncdump.exe (dll and static versions). You can get them from
ftp://ftp.unidata.ucar.edu/pub/netcdf/contrib/win32/netcdf-3.6.1-betal-win32d1ll.zip.
(Note: we don’t have a C++ interface here).

4.2 Installing the DLL

Whether you get the pre-built DLL or build your own, you’ll then have to install it some-
where so that your other programs can find it and use it.

To install a DLL, you just have to leave it in some directory, and (possibly) tell your
compiler in which directory to look for it.

A DLL is a library, and functions just like libraries under the Unix operating system.
As with any library, the point of the netCDF DLL is to provide functions that you can call
from your own code. When you compile that code, the linker needs to be able to find the
library, and then it pulls out the functions that it needs. In the Unix world, the -L option
tells the compiler where to look for a library. In Windows, library search directories can be
added to the project’s property dialog.

Similarly, you will need to put the header file, netcdf.h, somewhere that you compiler
can find it. In the Unix world, the -I option tells the compiler to look in a certain directory
to find header files. In the Windows world, you set this in the project properties dialog box
of your integrated development environment.

Therefore, installing the library means nothing more than copying the DLL somewhere
that your compiler can find it, and telling the compiler where to look for them.

The standard place to put DLLs is Windows\System32 folder (for Windows2000/XP)
or the Windows\System folder (for Windows 98 /ME). If you put the DLL there, along with

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dllproc/base/dynamic_link_libraries.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dllproc/base/dynamic_link_libraries.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconConsumingUnmanagedDLLFunctions.asp
ftp://ftp.unidata.ucar.edu/pub/netcdf/contrib/win32/netcdf-3.6.1-beta1-win32dll.zip

20 NetCDF Installation and Porting Guide

the ncgen and ncdump executables, you will be able to use the DLL and utilities without
further work, because compilers already look there for DLLs and EXEs.

Instead of putting the DLL and EXEs into the system directory, you can leave them
wherever you want, and every development project that uses the dll will have to be told
to search the netCDF directory when it’s linking, or, the chosen directory can be added to
your path.

On the .NET platform, you can also try to use the global assembly cache. (To learn
how, see MSDN topic “Global Assembly Cache”, at www.msdn.microsoft.com).

Following Windows conventions, the netCDF files belong in the following places:

File(s) Description Location

netcdf.dll C and Fortran function in DLL Windows\System
(98/ME) or
Windows\System32
(2000/XP)

netcdf.lib Library file Windows\System
(98/ME) or
Windows\System32
(2000/XP)

ncgen.exe, NetCDF utilities Windows\System

ncdump.exe (98/ME) or
Windows\System32
(2000/XP)

netcdf-3 netCDF source code Program
Files\Unidata

4.3 Using netcdf.dll with VC++ 6.0

When using the netCDF DLL, you should set the preprocessor flag DLL_NETCDF'. Do this
in the properties window for your project in visual studio.

To use the netedf.dll:

1. Place these in your include directory: netcdf.h C include file netcdf.inc Fortran include
file

2a. To use the Dynamic Library (shared) version of the netcdf library: Place these in a
directory that’s in your PATH: netcdf.dll library dll ncgen.exe uses the dll ncdump.exe uses
the dll

Place this in a library directory to link against: netcdf.lib library
2b. Alternatively, to use a static version of the library
Place this in a library directory to link against: netcdfs.lib library

Place these in a directory that’s in your PATH: ncgens.exe statically linked (no DLL
needed) ncdumps.exe statically linked (no DLL needed)

www.msdn.microsoft.com

Chapter 4: Building and Installing NetCDF on Windows 21

4.4 Building netcdf.dll with VC++.NET

To build the netCDF dll with VC++.NET open the win32/NET /netcdf.sln file with Visual
Studio. Both Debug and Release configurations are available - select one and build.

The resulting netcdf.dll file will be in subdirectory Release or Debug.

The netCDF tests will be built and run as part of the build process. The Fortran 77
interface will be built, but not the Fortran 90 or C++ interfaces.

The quick_large_files test program is provided as an extra project, however it is not
run during the build process, but can be run from the command line or the IDE. Note
that, despite its name, it is not quick. On Unix systems, this program runs in a few
seconds, because of some features of the Unix file system apparently not present in Windows.
Nonetheless, the program does run, and creates (then deletes) some very large files. (So
make sure you have at least 15 GiB of space available). It takes about 45 minutes to run
this program on our Windows machines, so please be patient.

4.5 Using netcdf.dll with VC++.NET

Load-time linking to the DLL is the most straightforward from C++. This means the
netedf.lib file has to end up on the compile command line. This being Windows, that’s
hidden by a GUI.

In Visual Studio 2003 this can be done by modifying three of the project’s properties.

Open the project properties window from the project menu. Go to the linker folder and
look at the general properties. Modify the property “Additional Library Directories” by
adding the directory which contains the netcdf.dll and netcdf.lib files. Now go to the linker
input properties and set the property “Additional Dependencies” to netcdf.lib.

Finally, still within the project properties window, go to the C/C++ folder, and look at
the general properties. Modify “Additional Include Directories” to add the directory with
the netcdf.h file.

Now use the netCDF functions in your C++ code. Of course any C or C++ file that wants
to use the functions will need:

#include <netcdf.h>

When using the netCDF DLL, you should set the preprocessor flag DLL_NETCDF. Do
this in the properties window for your project in visual studio.

22

NetCDF Installation and Porting Guide

Chapter 5: If Something Goes Wrong 23

5 If Something Goes Wrong

The netCDF package is designed to build and install on a wide variety of platforms, but
doesn’t always. It’s a crazy old world out there, after all.

5.1 The Usual Build Problems

5.1.1 Taking the Easy Way Out
Why not take the easy way out if you can?

Pre-compiled binaries for many platforms can be found at http://www.unidata.ucar.edu/software/netc
Click on your platform, and copy the files from the bin, include, lib, and man directories
into your own local equivalents (Perhaps /usr/local/bin, /usr/local/include, etc.).

5.1.2 How to Clean Up the Mess from a Failed Build

If you are trying to get the configure or build to work, make sure you start with a clean
distribution for each attempt. If netCDF failed in the “make” you must clean up the mess
before trying again. To clean up the distribution:

make distclean

5.1.3 Platforms On Which NetCDF is Known to Work

At NetCDF World Headquarters (in sunny Boulder, Colorado), as part of the wonderful
Unidata organization, we have a wide variety of computers, operating systems, and compil-
ers. At night, house elves test netCDF on all these systems.

Output for the netCDF test platforms can be found at http://www.unidata.ucar.edu/software/netcdf/

Compare the output of your build attempt with ours. Are you using the same compiler?
The same flags? Look for the configure output that lists the settings of CC, FC, CXX,
CFLAGS, etc.

On some systems you have to set environment variables to get the configure and build
to work.

For example, for a 64-bit IRIX install of the netCDF-3.6.2 release, the variables are set
before net CDF is configured or built. In this case we set CFLAGS, CXXFLAGS, FCFLAGS,
and FFLAGS.

flip), uname -a

IRIX64 flip 6.5 07080050 IP30 mips

flip% setenv CFLAGS -64

flip), setenv CXXFLAGS -64

flip), setenv FFLAGS -64

flip% setenv FCFLAGS -64

flip% make distclean;./configure;make check

5.1.4 Platforms On Which NetCDF is Reported to Work

If your platform isn’t listed on the successful build page, see if another friendly
netCDF user has sent in values for environment variables that are reported to work:
(http://www.unidata.ucar.edu/software/netcdf/other-builds.html).

http://www.unidata.ucar.edu/software/netcdf/binaries.html
http://www.unidata.ucar.edu/software/netcdf/builds
http://www.unidata.ucar.edu/software/netcdf/other-builds.html

24 NetCDF Installation and Porting Guide

If you build on a system that we don’t have at Unidata (particularly if it’s something
interesting and exotic), please send us the settings that work (and the entire build output
would be nice too). Send them to support@unidata.ucar.edu.

5.1.5 If You Have a Broken Compiler

For netCDF to build correctly, you must be able to compile C from your environment, and,
optionally, Fortran 77, Fortran 90, and C++. If C doesn’t work, netCDF can’t compile.

What breaks a C compiler? Installation or upgrade mistakes when the C compiler was
installed, or multiple versions or compilers installed on top of each other. Commercial
compilers frequently require some environment variables to be set, and some directories to
appear ahead of others in your path. Finally, if you have an expired or broken license, your
C complier won’t work.

If you have a broken C compiler and a working C compiler in your PATH, netCDF
might only find the broken one. You can fix this by explicitly setting the CC environmental
variable to a working C compiler, and then trying to build netCDF again. (Don’t forget to
do a “make distclean” first!)

If you can’t build a C program, you can’t build netCDF. Sorry, but that’s just the way
it goes. (You can get the GNU C compiler - search the web for “gec”).

If netCDF finds a broken Fortran 90, Fortran 77, or C++ compiler, it will report the
problem during the configure, and then drop the associated API. For example, if the C++
compiler can’t compile a very simple test program, it will drop the C++ interface. If you
really want the C++ API, set the CXX environment variable to a working C++ compiler.

5.1.6 What to Do If NetCDF Still Won’t Build

If none of the above help, try our troubleshooting section: See Section 5.2 [Troubleshooting],
page 24.

Also check to see of your problem has already been solved by someone else (see Section 5.3
[Finding Help], page 25).

If you still can’t get netCDF to build, report your problem to Unidata, but please make
sure you submit all the information we need to help (see Section 5.4 [Reporting Problems],
page 26).

5.2 Troubleshooting

5.2.1 Problems During Configuration

If the ./configure; make check fails, it’s a good idea to turn off the C++ and Fortran inter-
faces, and try to build the C interface alone. All other interfaces depend on the C interface,
so nothing else will work until the C interface works. To turn off C++ and Fortran, set
environment variables CXX and FC to NULL before running the netCDF configure script
(with csh: setenv FC ”;setenv CXX 7).

Turning off the Fortran and C++ interfaces results in a much shorter build and test cycle,
which is useful for debugging problems.

If the netCDF configure fails, most likely the problem is with your development envi-
ronment. The configure script looks through your path to find all the tools it needs to

Chapter 5: If Something Goes Wrong 25

build netCDF, including C compiler and linker, the ar, ranlib, and others. The configure
script will tell you what tools it found, and where they are on your system. Here’s part of
configure’s output on a Linux machine:

checking CPPFLAGS... -Df2cFortran
checking CC CFLAGS... cc -g

checking which cc... /usr/bin/cc
checking CXX... c++

checking CXXFLAGS... -g -02

checking which c++... /usr/local/bin/c++

checking FC... £f77

checking FFLAGS...

checking which £77... /usr/bin/f77
checking F90... unset

checking AR... ar

checking ARFLAGS... cru

checking which ar... /usr/bin/ar
checking NM... nm

checking NMFLAGS. ..

checking which nm... /usr/bin/nm

Make sure that the tools, directories, and flags are set to reasonable values, and com-
patible tools. For example the GNU tools may not inter-operate well with vendor tools. If
you're using a vendor compiler, use the ar, nm, and ranlib that the vendor supplied.

As configure runs, it creates a config.log file. If configure crashes, do a text search
of config.log for thing it was checking before crashing. If you have a licensing or tool
compatibility problem, it will be obvious in config.log.

5.2.2 Problems During Compilation

If the configure script runs, but the compile step doesn’t work, or the tests don’t complete
successfully, the problem is probably in your CFLAGS or CPPFLAGS

Frequently shared libraries are a rich source of problems. If your build is not working,
and you are using the —enable-shared option to generate shared libraries, then try to build
without —enable-shared, and see if the static library build works.

5.2.3 Problems During Testing

If you are planning on using large files (i.e. > 2 GiB), then you may wish to rerun configure
with —enable-large-file-tests to ensure that large files work on your system.

5.3 Finding Help On-line
The latest netCDF documentation (including this manual) can be found at
http://www.unidata.ucar.edu/software/netcdf/docs.

The output of successful build and test runs for recent versions of netCDF can be found
at http://www.unidata.ucar.edu/software/netcdf/builds

A list of known problems with netCDF builds, and suggested fixes, can be found at
http://www.unidata.ucar.edu/software/netcdf/docs/known_problems.html.

http://www.unidata.ucar.edu/software/netcdf/docs
http://www.unidata.ucar.edu/software/netcdf/builds
http://www.unidata.ucar.edu/software/netcdf/docs/known_problems.html

26 NetCDF Installation and Porting Guide

Reportedly successful settings for platforms unavailable for netCDF testing can be found
at http://www.unidata.ucar.edu/software/netcdf/other-builds.html. If you build
netCDF on a system that is not listed, please send your environment settings, and the full
output of your configure, compile, and testing, to support@unidata.ucar.edu. We will add
the information to the other-builds page, with a credit to you.

The replies to all netCDF support emails are on-line and can be searched. Before re-
porting a problem to Unidata, please search this on-line database to see if your problem has
already been addressed in a support email. If you are having build problems it’s usually
useful to search on your system host name. On Unix systems, use the uname command to
find it.

The netCDF Frequently Asked Questions (FAQ) list can be found at
http://www.unidata.ucar.edu/software/netcdf/faq.html.

To search the support database, see /search. jsp?support&netcdf.

The netCDF mailing list also can be searched; see /search. jsp?netcdfgroup.

5.4 Reporting Problems
To help us solve your problem, please include the following information in your email to
support@unidata.ucar.edu.

Unfortunately, we can’t solve build questions without this information; if you ask for
help without providing it, we’re just going to have to ask for it.

So why not send it immediately, and save us both the extra trouble?
1. the exact version of netCDF - see the VERSION file.

2. the *complete* output of “./configure”, “make”, and “make check. Yes, it’s long, but
it’s all important.

3. if the configure failed, the contents of config.log.

Although responses to your email will be available in our support database, your email
address is not included, to provide spammers with one less place to harvest it from.

http://www.unidata.ucar.edu/software/netcdf/other-builds.html
http://www.unidata.ucar.edu/software/netcdf/faq.html
/search.jsp?support&netcdf
/search.jsp?netcdfgroup
support@unidata.ucar.edu

Index

Index

--disable-compiler-recover 10
--disable-CXX 9
--disable-examplesciiiiiiiiiiia, 10
--disable-extreme-numbers 10
--disable-f77 9
--disable-fO0.......ol 9
--disable-flag-setting....................... 8
--disable-fortran-compiler-check.......... 10
--disable-fortran-type-check............... 10
--disable-largefile 9
--disable-utilities.......................... 9
--disable-V2 9
-—enable-c-only............... 9
—--enable-docs-install........................ 8
--enable-large-file-tests 9
--enable-separate-fortran.................. 10
--enable-shared................. 8
——prefix ..ol 8
--with-temp-large............................. 9
_LARGE_FILES, on AIX 12

6

64-bit platforms oo 7

A

AIX 64-bit build.......... 7
AIX, building on ... 12
autoconf 18
AULOMAKE . ..ot 18

B

bigendian........... ... i 17
binaries, Windows.c.coiiiiiiiiiia. 19
binary installo o 1
binary releases................ oL 5
bugs, reportingo 26

C

config.log. ... 8
configure, running ool 8
CRAY, porting tocooiiiiiiiininn.. 17
Cygwin, building with......... 12

D

debug directory, windows 21

27
DL 19
dll, gettingoo 19
documentation 25
documents, latest version 5
E
earlier netCDF versions......................... 5
enable-large-file-tests. 5
F
FAQ for netCDFo i, 25
flo.c .o 17
flexandyacc....................l 18
fortran, Intel i 12
fortran, Portland Group 12
Lo 12
B0 12
GNUmake ... 17
H
HPUX, buildingon..................oooiiit. 12
I
install directory.......... oL 8
installation requirements........................ 5
installing binary distribution.................... 1
installing netCDFot 12
Intel fortran............ L. 12
Irix, building on........ oo oL 12
K
known problems......... i 25
L
large file tests i 11
large file tests requirements..................... 5
large file tests, for windows 21
1ibtool ..ot 18
Linux, building on............ 12
littleendian oo 17
M
MA L 18
Macintosh, buildingon 12

28

mailing lists oo i 25
make all_large_tests............................ 11
make check............ 11
make install 12
make Ifs_test 11
make slow_check............................... 11
make test........ ... 11
make, running.......... oo oo 11
makeinfo....... 18
Microsoft.......... ... 19
MingGW, building with 12

N

nceonfig.h ... 17
nceonfigin. ... 17
NeconfigineC. ... oov 17
ncdump, windows location..................... 19
ncgen, windows location 19
TICIO & e e 17
NCX.INA Lo 17
NET 19
netedf.dll, location................. 19
netedflib. ... 19

@)

OBJECT_MODE, on AIX 12
OSF1, building on...............o oo 12
other builds document 25

P

porting notes, additional 17
Portland Group fortran........................ 12
POSIXIO.C.v e 17
prefix argument of configure 8
problems, reporting........... ... 26

Q

quick unix instructions........... o .. 3

NetCDF Installation and Porting Guide

quick_large_files, in VC++ NET 21

R

release directory, windows 21
reporting problemso L 26
running configure........... oL 8
running make. 11

sed. .. 18
shared libraries, building................. 3
shared libraries, using............ 1
successful build output, on web 25
SunOS 64-bit buildol 7
SunOS, building on........... L. 12
support email o oo 26

T

TEMP_LARGE ... 11
testing large file features....................... 11
testing, for windows oo 21
tests, running. ... o oo il 11
BOX . 18
troubleshooting......... oL 24
turning off C++, Fortran interface.............. 24

vV

VO 19
VC++ 6.0, using netedf with 20
VC++.NET, building with...................... 21
VC++.NET, using netedf with.................. 21
visual studio 2003 properties................... 21

\%\%

windows large file tests oL 21
windows testing L 21
windows, building on L 19

	Installing the NetCDF Binaries
	Quick Instructions for Installing NetCDF on Unix
	Building and Installing NetCDF on Unix Systems
	Installation Requirements
	Specifying the Environment for Building
	Variable Description Notes

	Building on 64 Bit Platforms
	Running the configure Script
	Running make
	Testing the Build
	Installing NetCDF
	Platform Specific Notes
	AIX
	Cygwin
	MinGW
	HPUX
	Irix
	Linux
	Macintosh
	OSF1
	SunOS
	Handling Fortran Compilers
	Intel Fortran
	Portland Group Fortran
	GNU Fortran
	g95
	g++

	Additional Porting Notes
	Contributing to NetCDF Source Code Development

	Building and Installing NetCDF on Windows
	Getting Prebuilt netcdf.dll
	Installing the DLL
	Using netcdf.dll with VC++ 6.0
	Building netcdf.dll with VC++.NET
	Using netcdf.dll with VC++.NET

	If Something Goes Wrong
	The Usual Build Problems
	Taking the Easy Way Out
	How to Clean Up the Mess from a Failed Build
	Platforms On Which NetCDF is Known to Work
	Platforms On Which NetCDF is Reported to Work
	If You Have a Broken Compiler
	What to Do If NetCDF Still Won't Build

	Troubleshooting
	Problems During Configuration
	Problems During Compilation
	Problems During Testing

	Finding Help On-line
	Reporting Problems

	Index

