G95 Manual

Contents

Synopsis
G95 Options
Preprocessor Options

Fortran Options
Code Generation Options

Directory Options

Environment Variables

Runtime Error Codes

Fortran 2003 Features

Interfacing with G95 Programs

Using the Random Number Generator
Predefined Preprocessor Macros

Key G95 Features
Corefile Resume Feature

Smart Compiling
Installation Notes

Running G95

G95 Extensions - Intrinsic Procedures
Links

About this Manual

Copyright Statement

SYNOPSIS
g95 [¢ | -S| -E] compile & assemble | produce assembly code | list source

[-g] [-pg] debug options
[-Olevel] optimization level
[-s] strip
[-Wwarn...] [-pedantic] warning switches
[-Idir...] include directory to search
[-Ldir...] library directory to search
[-Dmacro[=defn]...] define macro
[-Umacro] undefine macro
[-foption...]
[-mmachine-option...]
[-ooutfile] name of outfile
infile

G95 Options

Usage: g95 [options] file...

-pass-exit-codes Exit with highest error code from a phase
--help Display this information
--target-help Display target specific command line options. (Use '-v --help' to display command line

options of sub-processes)

—dumpspecs Display all of the built in spec strings

Page 1

—dumpversion Display the version of the compiler

—dumpmachine Display the compiler's target processor
-print-search-dirs Display the directories in the compiler's search path
-print-libgcc-file-name Display the name of the compiler's companion library

-print-file-name = <lib> Display the full path to library </ib>

-print-prog-name = <prog> Display the full path to compiler component <prog>

-print-multi-directory Display the root directory for versions of libgce
-print-multi-1lib Display the mapping between command line options and multiple library search
directories

-print-multi-os-directory Display the relative path to OS libraries

-Wa, <options> Pass comma-separated options on to the assembler
-Wp, <options> Pass comma-separated options on to the preprocessor
-Wl,<options> Pass comma-separated options on to the linker
-Xassembler <arg> Pass <arg> on to the assembler
-Xpreprocessor <arg> Pass <arg> on to the preprocessor

-Xlinker <arg> Pass <arg> on to the linker

—-combine Pass multiple source files to compiler at once
-save-temps Do not delete intermediate files

~pipe Use pipes rather than intermediate files

-time Time the execution of each subprocess
-specs=<file> Override built-in specs with the contents of <file>
-std=<standard> Assume that the input sources are for <standard>
-B <directory> Add <directory> to the compiler's search paths

-b <machine> Run gec for target <machine>, if installed

-V <version> Run gce version number <version>, if installed

Y Display the programs invoked by the compiler
—#4# Like -v but options quoted and commands not executed
-E Pre-process only; do not compile, assemble or link
=S Compile only; do not assemble or link

-c Compile and assemble, but do not link

-0 <file> Place the output into <file>

Page 2

-x <language> Specify the language of the following input files. Permissible languages include: c,
c++, assembler, none; 'none' means revert to the default behavior of guessing the
language based on the file's extension

Options starting with -g, -f, -m, -O, -W, or --param are automatically passed on to the various sub-processes invoked by g95. In
order to pass other options on to these processes the -W</etter> options must be used.

For bug reporting instructions, please see: http://www.g95.org or mail andyv@firstinter.net.

By default, programs compiled with g95 have no optimization. For information on all the GCC options available when compiling
with g95, see: http://gce.gnu.org/onlinedocs/gec-4.1.1/gec/.

Command line arguments:

A program compiled with g95 may be executed with these arguments:

--g95 Display a list of environment variables recognized by g95, runtime error codes, and
command line arguments.

Preprocessor Options

G95 can handle files that contain C preprocessor constructs.

-cpp Force the input files to be run through the C preprocessor

-no-cpp Prevent the input files from being pre-processed

-Dname[=value] Define a preprocessor macro

-Uname Undefine a preprocessor macro

-E Show pre-processed source only

-Idirectory Append 'directory' to the include and module files search path. Files are searched for in various

directories in this order: Directory of the main source file, the current directory, directories specified
by -1, directories specified in the G95_INCLUDE PATH environment variable and finally the
system directories.

Fortran Options

-Wall Enable most warning messages.

—Werror Change warnings into errors.

~Wextra Enable warning not enabled by -Wall

-Wglobals Cross-check procedure use and definition within the same source file. On by default, use

-Wno-globals to disable.

-Wimplicit-none Same as -fimplicit-none.

-Wimplicit-interface Warn about using an implicit interface

-Wline-truncation Warn about truncated source lines.

-Wmissing-intent Warn about missing intents on format arguments
-Wobsolescent Warn about obsolescent constructs.

-Wno=numbers Disable a comma separated list of warnings indicated by numbers.

Page 3

http://www.g95.org
http://gcc.gnu.org/onlinedocs/gcc-4.0.1/gcc/.html
http://gcc.gnu.org/onlinedocs/gcc-3.4.3/gcc/

-Wuninitialized
-Wunused-vars
-Wunused-types
-Wunset-vars
-Wunused-module-vars
-Wunused-module-procs
-Wunused-parameter
-Wprecision-loss

-fbackslash

—fd-comment
-fdollar-ok

-fendian=

-ffixed-form

-ffixed-line-length-132

-ffixed-line-length-80
-ffree-form
-ffree-line-length-huge

-fimplicit-none

-fintrinsic-extensions

-fintrinsic-extensions=
procl, procz,...

-fmod=directory
-fmodule-private
-fmultiple-save
-fone-error
-ftrl15581

-M

-std=F

-std=£2003

Warn about variables used before initialized. Requires -O2.

Warn about unused variables.

Warn about unused module types. Not implied by -Wall

Warn about unset variables.

Warn about unused module variables. Useful for ONLY clauses.
Warn about unused module procedures. Useful for ONLY clauses.
Warn about unused parameters. Not implied by -Wall.

Warn about precision loss in implicit type conversions.

Interpret backslashes in character constants as escape codes. Use -fno-backslash to treat
backslashes literally.

Make D lines executable statements in fixed form.
Allow dollar signs in entity names.

Force the endian-ness of unformatted reads and writes. The value must be 'big' or 'little'.
Overrides environment variables.

Assume that the source file is fixed form.

132 character line width in fixed mode.

80 character line width in fixed mode.
Assume that the source file is free form.
Allow very large source lines (10k)

Specify that no implicit typing is allowed, unless overridden by explicit IMPLICIT
statements.

Enable g95-specific intrinsic functions even in a -std= mode.

Include selected intrinsic functions even in a -std= mode. The list is comma-separated
and case insensitive.

Put module files in directory.

Set default accessibility of module-entities to PRIVATE.

Allow the SAVE attribute to be specified multiple times.

Force compilation to stop after the first error.

Enable the TR15581 allocatable array extensions even in -std=F or -std=f95 modes.
Produce a Makefile dependency line on standard output.

Warn about non-F features.

Strict Fortran 2003 checking.

Page 4

-std=£95

-i4

-i8

-r8

-ds

Strict Fortran 95 checking.

Set kinds of integers without specification to kind=4 (32 bits).
Set kinds of integers without specification to kind=8 (64 bits).
Set kinds of reals without kind specifications to double precision.

Implies -i8 and -r8.

Code Generation Options

—-fbounds-check
-fcase-upper
-fleading-underscore
—-fonetrip

-fpack-derived

-fgkind=n

-fsecond-underscore

—-fshort-circuit

-fsloppy-char

-fstatic

-ftrace

-funderscoring
-max-frame-size=n
-finteger=n
-flogical=

-freal=

-fpointer=

-fround=

-fzero

Check array and substring bounds at runtime.

Make all public symbols uppercase.

Add a leading underscore to public names.

Execute DO-loops at least once. (Buggy fortran 66).

Try to layout derived types as compact as possible. Requires less memory, but may be
slower.

Set the kind for a real with the 'q' exponent to 7.

Append a second trailing underscore in names having an underscore (default). Use
-fno-second-underscore to suppress.

Cause the .AND. and .OR. operators to not compute the second operand if the value of the
expression is known from the first operand.

Suppress errors when writing non-character data to character descriptors.

Put local variables in static memory where possible. This is not the same as linking things
statically (-static).

"-ftrace=frame' will insert code to allow stack tracebacks on abnormal end of program. This
will slow down your program. '-ftrace=full' additionally allows finding the line number of
arithmetic exceptions (slower). Default is '-ftrace=none'.

Append a trailing underscore in global names (default). Use -fno-underscoring to suppress.
How large a single stack frame will get before arrays are allocated dynamically.

Initialize uninitialized scalar integer variables to #.

Initialize uninitialized scalar logical variables. Legal values are none, true and false.

Initialize uninitialized scalar real and complex variables. Legal values are none, zero, nan,
inf, +inf and -inf.

Initialize scalar pointers. Legal values are none, null and invalid.

Controls compile-time rounding. Legal values are nearest, plus, minus and zero. Default is
round to nearest, plus is round to plus infinity, minus is minus infinity, zero is towards zero.

Initialize numeric types to zero, logical values to false and pointers to null. The other
initialization options override this one.

Page 5

Directory Options

-I<directory> Append directory to the include and module files search path
-L<directory> Append directory to the library search path
-fmod=<directory> Put module files in directory

-frelative Search relative to the source file directory

Environment Variables

The g95 runtime environment provides many options for tweaking the behavior of your program once it runs. These are controllable
through environment variables. Running a g95-compiled program with the —g95 option will dump all of these options to standard
output. The values of the various variables are always strings, but the strings can be interpreted as integers or boolean truth values.
Only the first character of a boolean is examined and must be 't', 'f', 'y', 'n', '1' or '0' (uppercase OK too). If a value is bad, no error is
issued and the default is used. For GCC environment variables used by g95, such as LIBRARY PATH, see the GCC
documentation.

G95_STDIN_UNIT Integer Unit number that will be pre-connected to standard input. No pre-
connection if negative, default is 5.

G95_STDOUT_UNIT Integer Unit number that will be pre-connected to standard output. No pre-
connection if negative, default is 6.

G95_STDERR_UNIT Integer Unit number that will be pre-connected to standard error. No pre-
connection if negative, default is 0.

G95_USE_STDERR Boolean Sends library output to standard error instead of standard output. Default is
Yes.
G95_ENDIAN String Endian format to use for I/O of unformatted data. Values are BIG, LITTLE

or NATIVE. Default is NATIVE.

G95_CR Boolean Output carriage returns for formatted sequential records. Default true on
windows, false elsewhere.

G95_INPUT_CR Boolean Treat a carriage return-linefeed as a record marker instead of just a
linefeed. Default true.

G95_IGNORE_ENDFILE Boolean Ignore attempts to read past the ENDFILE record in sequential access
mode. Default false.

G95_TMPDIR String Directory for scratch files. Overrides the TMP environment variable. If
TMP is not set /var/tmp is used. No default.

G95_UNBUFFERED_ ALL Boolean If TRUE, all output is unbuffered. This will slow down large writes but can
be useful for forcing data to be displayed immediately. Default is False.

G95_SHOW_LOCUS Boolean If TRUE, print filename and line number where runtime errors happen.
Default is Yes.

G95_CHECKPOINT Integer On x86 Linux, the number of seconds between checkpoint

corefile dumps, with zero meaning no dumps.

G95_OPTIONAL PLUS Boolean Print optional plus signs in numbers where permitted. Default FALSE.

Page 6

G95 DEFAULT RECL

G95 LIST SEPARATOR

G95 LIST EXP

G95 LIST EXP

G95_COMMA

G95 EXPAND UNPRINTABLE

G95 QUIET

G95 SYSTEM CLOCK

G95 SEED RNG

G95 MINUS ZERO

G95_ ABORT

G95 MEM INIT

G95 MEM SEGMENTS

G95 MEM MAXALLOC

G95 MEM MXFAST

G95 MEM TRIM THRESHOLD

G95 MEM TOP PAD

G95 SIGHUP

G95 SIGINT

G95 FPU ROUND

Integer

String

String

Integer

Boolean

Boolean

Boolean

Integer

Boolean

Boolean

Boolean

String

Integer

Boolean

Integer

Integer

Integer

String

String

String

Default maximum record length for sequential files. Most useful for
adjusting line length of pre-connected units. Default is 50000000.

Separator to use when writing list output. May contain any number of
spaces and at most one comma. Default is a single space.

Separator to use when writing list output. May contain any number of
spaces and at most one comma. Default is a single space.

Last power of ten which does not use exponential format for list output.
Default 6.

Use a comma character as the default decimal point for I/O. Default false.

For formatted output, print otherwise unprintable characters with
\-sequences. Default No.

Suppress bell characters (\a) in formatted output. Default No.

Number of ticks per second reported by the SYSTEM_CLOCK() intrinsic
in microseconds. Zero disables the clock. Default 100000.

If true, seeds the random number generator with a new seed when the
program is run. Default false.

If true, prints minus zero without a minus sign in formatted (non-list)
output, contrary to the standard. Default FALSE.

If true, dumps core on abnormal program end. Useful for finding the locus
of the problem. Default FALSE.

How to initialize allocated memory. Default value is NONE for no
initialization (faster), NAN for a Not-a-Number with the mantissa 0x40195
or a custom hexadecimal value.

Maximum number of still-allocated memory segments to display when
program ends. 0 means show none, less than 0 means show all. Default 25.

If true, shows the maximum number of bytes allocated in user memory
during the program run. Default No.

Maximum request size for handing requests in from fastbins. Fastbins are
quicker but fragment more easily. Default 64 bytes.

Amount of top-most memory to keep around until it is returned to the
operating system. -1 prevents returning memory to the system. Useful in
long-lived programs. Default 262144.

Extra space to allocate when getting memory from the OS. Can speed up
future requests. Default 0.

Whether the program will IGNORE, ABORT or SUSPEND on SIGHUP.
Default ABORT.

Whether the program will IGNORE or ABORT or SUSPEND on SIGINT.
Default ABORT.

Set floating point rounding mode. Values are NEAREST, UP, DOWN,
ZERO. Default is NEAREST.

Page 7

G95_FPU_PRECISION String Precision of intermediate results. Value can be 24, 53 and 64. Default 64.
Only available on x86 and IA64 compatibles.

G95_FPU_DENORMAL Boolean Raise a floating point exception when denormal numbers are encountered.
Default no.
G95_FPU_INVALID Boolean Raise a floating point exception on an invalid operation. Default No.
G95_FPU_ZERODIV Boolean Raise a floating point exception when dividing by zero. Default No.
G95_FPU_OVERFLOW Boolean Raise a floating point exception on overflow. Default No.
G95_FPU_UNDERFLOW Boolean Raise a floating point exception on underflow. Default No.
G95_FPU_INEXACT Boolean Raise a floating point exception on precision loss. Default No.
G95_FPU_EXCEPTIONS Boolean ~ Whether masked floating point exceptions should be shown after the

program ends. Default No.
G95_UNIT x String Overrides the default unit name for unit x.

G95_UNBUFFERED x Boolean If true, unit x is unbuffered.

Runtime Error Codes

Running a g95-compiled program with the —g95 option will dump this list of error codes to standard output.

-2 End of record

-1 End of file

0 Successful return

Operating system errno codes (1 - 199)

200 Conflicting statement options

201 Bad statement option

202 Missing statement option

203 File already opened in another unit

204 Unattached unit

205 FORMAT error

206 Incorrect ACTION specified

207 Read past ENDFILE record

208 Bad value during read

209 Numeric overflow on read

210 Out of memory

211 Array already allocated

212 Deallocated a bad pointer

214 Corrupt record in unformatted sequential-access file
215 Reading more data than the record size (RECL)
216 Writing more data than the record size (RECL)

SEE ALSO:

For further information see the following man and info entries: gpl(7), gfdl(7), fsf-funding(7), cpp(1), gcov(1), gec(1), as(1), 1d(1),
gdb(1), adb(1), dbx(1), sdb(1) and the Info entries for gec, cpp, as, 1d, binutils and gdb.

Page 8

Fortran 2003 Features

G95 implements several features of Fortran 2003. For a discussion of all the new features of Fortran 2003, see:
http://www.kcl.ac.uk/kis/support/cit//fortran/john reid new 2003.pdf

The following intrinsic procedures are available:

COMMAND ARGUMENT COUNT GET COMMAND ARGUMENT

GET_ COMMAND GET ENVIRONMENT VARIABLE

Real and double precision DO loop index variables are not implemented in g95.
Square brackets [... | may be used as an alternative to (/ ... /) for array constructors and delimiters.

TR 15581 - allocatable derived types. Allows the use of the ALLOCATABLE attribute on dummy arguments, function results, and
structure components.

Stream I/0 - F2003 stream access allows a Fortran program to read and write binary files without worrying about record
structures. For example:

character (len=5) :: a

open (7, file='output', status='old', access='stream')
read (7, pos=5) a

close(7)

print *, a

end

Reads five bytes directly from position 5 of the 'output' file. I/O can be formatted or unformatted. The INQUIRE statement has also
been enhanced to add a POS= tag which returns the current position of the stream file, for a future READ or WRITE.

Note: ACCESS='transparent' is equivalent to access='stream’

Clive Page has written some documentation on this feature, available at:
http://www.star.le.ac.uk/~cgp/streamlO.html

IMPORT - can be used in an interface body to enable access to entities of the host scoping unit.

European convention for real numbers - a decimal='comma' tag in open, read and write statements allows replacement of the
decimal point in real numbers with a comma.

MIN() and MAX() work with character as well as numeric types.

A type declaration attribute of VALUE for the dummy argument of a subprogram causes the actual argument to be passed by value.
F2003 style structure constructors are supported.

F2003 style procedure pointers are supported.

F2003's BIND(C) construct is supported, providing easier C interoperability.

Interfacing with G95 Programs

While g95 produces stand-alone executables, it is occasionally desirable to interface with other programs, usually C. The first
difficulty that a multi-language program will face is the names of the public symbols. G95 follows the f2¢ convention of adding an
underscore to public names, or two underscores if the name contains an underscore. The -fno-second-underscore and
-fho-underscoring can be useful to force g95 to produce names compatible with your C compiler.

Page 9

http://www.kcl.ac.uk/kis/support/cit//fortran/john_reid_new_2003.pdf
http://www.star.le.ac.uk/~cgp/streamIO.html

Use the 'nm' program to look at the .o files being produce by both compilers. G95 folds public names to lowercase as well, unless
-fupper-case is given, in which case everything will be upper case. Module names are represented as module-name MP_name.

After linking, there are two main cases: Fortran calling C subroutines and C calling fortran subroutines. For C calling Fortran
subroutines, the Fortran subroutines will often call Fortran library subroutines that expect the heap to be initialized in some way.

To force a manual initialization from C, call g95_runtime_start() to initialize the fortran library and g95_runtime_stop() when
done. The prototype of 295 runtime_start() is:

void g95 runtime start (int argc, char *argvl(]);

The library has to be able to process command-line options. If this is awkward to do and your program doesn't have a need for
command-line arguments, pass arge=0 and argv=NULL.

On OSX/Tiger, include '-1SystemStubs' when using g95 to run the linker and linking objects files compiled by gcc.

Using the Random Number Generator

REAL, INTENT (OUT) :: h
CALL random number (h)

Returns a REAL scalar or an array of REAL random numbers in h, 0 <=h <1.

random seed
CALL random seed(sz,pt,gt)

INTEGER, OPTIONAL, INTENT (OUT) :: sz
INTEGER, OPTIONAL, INTENT (IN) :: pt(nl)
INTEGER, OPTIONAL, INTENT (OUT) :: gt (n2)

Argument ‘sz’ is the minimum number of integers required to hold the value of the seed; g95 returns 4.
Argument ‘pt’ is an array of default integers with size n1 >= sz, containing user provided seed values.
Argument ‘gt’ is an array of default integers with size n2 >= sz, containing the current seed.

Predefined Preprocessor Macros

The macros that are always defined are:

_G95 0
~ G95 MINOR 50
~_ FORTRAN 95
~ GNUC__ 4

The conditional macros are:

unix windows hpux linux solaris irix
aix netbsd freebsd openbsd cygwin

Key G95 Features

. Free Fortran 95 compliant compiler

. Current (August 2006) g95 version is 0.90

. GNU open source

. TR15581 (Allocatable dummy arguments, derived type components etc.)
. F2003 style procedure pointers

. F2003 style structure constructors

. F2003 C interoperability

. Dummy arguments of type VALUE in subroutine are passed by value

. Comma option in OPEN, READ, and WRITE for denoting decimal point

Page 10

Square brackets [... | may be used for array constructors
IMPORT, used in an interface body to enable access to entities of the host scoping unit
MIN() and MAX() for character as well as numeric types
OPEN for "Transparent" or stream I/O
GET_COMMAND (Get Command Line)
GET_COMMAND_ARGUMENT
COMMAND ARGUMENT COUNT
GET_ENVIRONMENT VARIABLE
Backwards compatibility with g77
Default integers of 32 bit or 64 bit available
Invoke External command
Tabbed source form
Symbolic names with $ option
Hollerith data
DOUBLE COMPLEX
Varying length for named COMMON
Mix numeric and character in COMMON and EQUIVALENCE
INTEGER*n: 1,2,4,8
LOGICAL*n: 1,2,4,8
REAL*n: 4,8
REAL¥*10 for x86 systems
List-formatted floating point output prints the minimal number of digits necessary to uniquely distinguish the number
VAX style debug (D) lines
C style string constants option (e.g. 'hello\nworld')
\ edit descriptor
$ edit descriptor
Get File Size, Date, Attributes
VAX style system intrinsics (SECNDS etc.)
Unix style system library (getenv, etime etc.)
Detect non-conformant or non-allocated arrays at run-time - see Table IV at:
http://ftp.aset.psu.edu/pub/ger/fortran/test/results.txt
Detection of memory leaks - see Table V at: http:/ftp.aset.psu.edu/pub/ger/fortran/test/results.txt
Traceback of runtime errors
Smart compile feature prevents module compile cascades
F compatibility option
Program suspend/resume feature available for x86/Linux
Operation of compiled programs can be modified by a large list of environment variables, documented in the compiled
program itself
Obsolete real or double precision loop index is DELETED
Quick response by developer on bug reports is typical
Builds with GCC 4.0.3 and 4.1.1 release versions
Installs on the following platforms:
Linux on x86, PowerPC, 64-bit Opteron, 64-bit Itanium, 64-bit Alpha
OSX on Power Mac G4, x86-OSX
FreeBSD on x86
Cygwin, MinGW, & Interix
HP-UX 11
Solaris
OpenBSD, NetBSD
AIX
IRIX
Tru64 UNIX on Alpha
Fink versions are also available
Binaries of 'stable' and current versions for most platforms are available at http:/ftp.g95.org

Page 11

http://ftp.aset.psu.edu/pub/ger/fortran/test/results.txt
http://ftp.aset.psu.edu/pub/ger/fortran/test/results.txt
http://ftp.g95.org

Corefile Resume Feature

On x86 Linux systems, the execution of a g95-compiled program can be suspended and resumed.

If you interrupt a program by sending it the QUIT signal, which is usually bound to control-backslash, the program will write an
executable file named 'dump' to the current directory.

Running this file causes the execution of your program to resume from when the dump was written.

andy@fulcrum:~/g95/9g95 % cat tst.f90
b =20.0
do i=1, 10
do j=1, 3000000
call random number (a)
a=2.0a - 1.0

b =Db + sin(sin(sin(a)))
enddo
print *, i, b
enddo
end

andy@fulcrum:~/g95/9g95 % g95 tst.f90
andy@fulcrum:~/g95/g95 % a.out
1 70.01749

2 830.63153

3 987.717

4 316.48703

5 -426.53815

6 25.407673 (control-\ hit)
Process dumped

7 -694.2718

8 -425.95465

9 -413.81763

10 -882.66223
andy@fulcrum:~/g95/g95 % ./dump
Restarting

............ Junping

7 -694.2718

8 -425.95465

9 -413.81763

10 -882.66223
andy@fulcrum:~/g95/g95 %

Any open files must be present and in the same places as in the original process. If you link against other languages, this may not
work.

While the main use is allowing you to preserve the state of a run across a reboot, other possibilities include pushing a long job
through a short queue or moving a running process to another machine. Automatic checkpointing of your program can be done by
setting the environment variable G95_CHECKPOINT with the number of seconds to wait between dumps. A value of zero means

no dumps.

New checkpoint files overwrite old checkpoint files.

Smart Compiling

G95 is friendly to top-down programming style. In other compilers, modifying a routine in a module may trigger a time-consuming
compilation cascade of all the code that uses the module. G95 is intelligent about breaking this cycle if it finds that the module
interfaces (or module-level variables) have not changed. Consider the following source files:

Page 12

module ml
integer :: a, b
end module m2

module m2
integer :: ¢, d
end module m2

subroutine sub ()
use ml

print *, a
end

If these are compiled using a makefile, b.f90 depends on m1.mod and m1.mod depends on a.f90. Suppose you edit a.f90 and
change m2 in some manner, leaving m1 alone. When you run 'make', a.f90 is recompiled because it is now newer than m1.mod and
m2.mod. Because the m1.mod has not changed, it is left alone, but b.f90, which depends on m1.mod is not recompiled because
ml.mod has not changed.

Now, a.f90 will continue to be recompiled on every make because m1.mod looks like it is out of date. This is a small price to pay,
because there may be many modules that use m1, that do not have to be recompiled. In a large project, a make can normally trigger
many, many recompiles if m1 were used by another module that was in turn used by many other source files. Touching every source
file at once forces everything to be recompiled.

Installation Notes

Linux:
Open a console, and go to the directory in which you want to install g95. To download and install g95, run the following
commands:

wget -O - http://www.g95.0rg/g95-x86-1linux.tgz | tar xvfz -
In -s $PWD/g95-install/bin/i686-pc-linux-gnu-g95 /usr/bin/g95

The following files and directories should be present:
./g95-install/

./g95-install/bin/
./g95-install/bin/1686-pc-linux-gnu-g95

./g95-install/lib/gcc-1ib/1686-pc-linux-gnu/4.1.1/
./g95-install/lib/gcc-1ib/i686-pc-linux-gnu/4.1.1/£951
./995-install/lib/gcc-1ib/i686-pc-linux-gnu/4.1.1/crtendS.o
./995-install/lib/gcc-1ib/i686-pc-linux-gnu/4.1.1/crtend.o

./g95-install/lib/gcc-1ib/1686-pc-linux-gnu/4.
./g95-install/lib/gcc-1ib/1686-pc-linux-gnu/4.
./g95-install/lib/gcc-1ib/1686-pc-linux-gnu/4.

.1/crtbeginT.o
.1/crtbeginS.o
.1/crtbegin.o

PR R R R R R R

./g95-install/lib/gcc-1ib/i1686-pc-linux-gnu/4.1.1/ccl
./995-install/lib/gcc-1ib/i686-pc-linux-gnu/4.1.1/1ibf95.a
./995-install/lib/gcc-1ib/i686-pc-linux-gnu/4.1.1/1libgcc.a

./g95-install/INSTALL
./995-install/G95Manual .pdf

The file ccl is a symbolic link to 951 in the same directory.

Page 13

http://www.g95.org/g95-x86-linux.tgz

Cygwin:

The -mno-cygwin option allows the Cygwin version of g95 to build executables that do not require access to the file cygwinl.dll in
order to work, and so can be easily run on other systems. Also the executables are free of restrictions attached to the GNU GPL
license. To install a Cygwin version with a working -mno-cygwin option, you will need the mingw libraries installed, available from
the Cygwin site: http://cygwin.com.

Download the binary from http://www.g95.0rg/g95-x86-cygwin.tgz to your root Cygwin directory (usually c:\Cygwin); start a
Cygwin session, and issue these commands:

cd /
tar -xvzf g95-x86-cygwin.tgz

This installs the g95 executable in the /usr/local/bin directory structure.
Caution: Do not use Winzip to extract the files from the tarball or the necessary links may not be properly set up.

MinGW:

The g95 MinGW-based binary for Windows can provide two types of install. If MinGW is found, it installs into the MinGW file
structure, otherwise it installs a complete stand-alone version with the supporting MinGW binutils files. Download g95 from
http://www.g95.0rg/g95-MinGW.exe. If you have MinGW, install g95 by executing the installer in the root MinGW directory. Set
the PATH to find the MinGW\bin (or the g95\bin) directory, and set the environment variable LIBRARY PATH with:

SET LIBRARY PATH = <path—to—MinGW/lib> .
Windows XP Users Note:

MinGW currently allows about 8 mb for the heap on Windows XP. If your application requires access to more memory, try
compiling with: -W1,--heap=0x01000000

Running G95

This section is provided to aid users unfamiliar with Unix compiler syntax.

Basic options:

-¢ Compile only, do not run the linker.
-0 Specify the name of the output file, either an object file or the executable.

Multiple source and object files can be specified at once. Fortran files are indicated by names ending in ".f", ".F", ".for", ".FOR",
".£90", ".F90", ".£95", ".F95", and ".f03" and ".F03" for F2003 files. Multiple source files can be specified. Object files can be
specified as well and will be linked to form an executable.

Files ending in uppercase letters are pre-processed with the C preprocessor by default, files ending in lowercase letters are not pre-
processed by default.

Files ending in ".f", ".F", ".for", and ".FOR" are assumed to be fixed form source compatible with old {77 files. Files ending in
".f90", ".F90", ".f95", ".F95", ".f03" and ".F03" are assumed to be free source form.

Simple examples:

g95 -c hello.f90
Compiles hello.f90 to an object file named hello.o.

g95 hello.f90
Compiles hello.f90 and links it to produce an executable a.out (on Linux), or, a.exe (on MS Windows systems).

g95 -c hl1.£f90 h2.£90 h3.£90
Compiles multiple source files. If all goes well, object files h1.0, h2.0 and h3.0 are created.

Page 14

http://cygwin.com/
http://www.g95.org/g95-x86-cygwin.tgz
http://www.g95.org/g95-MinGW32.exe.

g95 -o hello hl.£90 h2.£f90 h3.£90
Compiles multiple source files and links them together to an executable file named 'hello’, or 'hello.exe’' on MS Windows systems.

G95 Extensions - Intrinsic Procedures

abort derfc getlog
access dfloat getpid
algama dreal hostnm
besijo0 dtime isatty
besil erf isnan
besin erfc Ilnblnk
besy0 etime lstat
besyl exit new line
besyn fdate rand
chdir float rename
chmod flush secnds
command argument count fstat signal
dbesj0 ftell sizeof
dbesijl g95 runtime start sleep
dbesin gamma srand
dbesy0 get command stat
dbesyl get command argument system
dbesyn get environment variable time
dcmplx getarg unlink
derf getcwd Sval & %ref
getenv
abort

CALL abort () | INTEGER FUNCTION abort ()

Prints a message and quits the program with a core dump.

access

INTEGER FUNCTION access (filename, mode)
CHARACTER (LEN=*) :: filename

CHARACTER (LEN=*) :: mode

Checks whether the file ‘filename’ can be accessed with the specified mode, where ‘mode’ is one or more of the letters ‘rwx’.

algama
REAL FUNCTION algama (x)
REAL, INTENT(IN) :: x

Returns the natural logarithm of gamma(x).

besj0
REAL FUNCTION besj0 (x)
REAL :: x

Returns double-precision bessel function value (first kind, zero order).

besjl
REAL FUNCTION besjl (x)
REAL :: x

Returns double-precision bessel function value (first kind, first order).

besjn

REAL FUNCTION besjn (n, x)
INTEGER :: n

REAL :: x

Returns double-precision bessel function value (first kind, nth order).

Page 15

besy0
REAL FUNCTION besy0 (x)
REAL :: x

Returns double-precision bessel function value (second kind, zero order).

besyl
REAL FUNCTION besyl (x)
REAL :: x

Returns double-precision bessel function value (second kind, first order).

besyn

REAL FUNCTION besyn (n,x)
INTEGER :: n

REAL :: x

Returns double-precision bessel function value (second kind, nth order).

chdir
CALL chdir(dir) | INTEGER FUNCTION chdir (dir)
CHARACTER (LEN=*) :: dir

Sets the current working directory to 'dir'.

chmod

INTEGER FUNCTION chmod (file, mode)
CHARACTER (LEN=*) :: file

INTEGER :: mode

Change permissions for a file.

command argument count
INTEGER FUNCTION command argument count

Returns the number of arguments on the command line.

dbesj0
REAL FUNCTION dbesj0 (x)
REAL :: x

Returns a double-precision bessel function value (first kind, zero order).

dbesijl
REAL FUNCTION dbesjl (x)
REAL :: x

Returns a double-precision bessel function value (first kind, first order).

dbesjn

REAL FUNCTION dbesjn (n, x)
INTEGER :: n

REAL :: x

Returns a double-precision bessel function value (first kind, nth order).

dbesy0
REAL FUNCTION dbesy0 (x)
REAL :: x

Returns a double-precision bessel function value (second kind, zero order).

Page 16

dbesyl
REAL FUNCTION dbesyl (x)
REAL :: x

Returns a double-precision bessel function value (second kind, first order).

dbesyn

REAL FUNCTION dbesyn (n, x)
INTEGER :: n

REAL :: x

Returns a double-precision bessel function value (second kind, nth order).

dcmplx ()

Double precision CMPLX()

derf
REAL FUNCTION derf (x)
REAL :: x

Returns the error function of x.

derfc
REAL FUNCTION derfc(x)
REAL :: x

Returns the complementary error function of x: derfc(x) = 1 - derf(x).

dfloat ()

Double precision REAL()

dreal ()

Alias for DBLE()

dtime

CALL dtime (tarray,result) | REAL FUNCTION dtime (tarray)
REAL, OPTIONAL, INTENT (OUT) :: tarray(2)

REAL, OPTIONAL, INTENT(OUT) :: result

Returns the runtime in seconds since the start of the process, or since the last invocation.

erf
REAL FUNCTION erf (x)
REAL :: x

Returns the error function of x.

erfc
REAL FUNCTION erfc (x)
REAL :: x

Returns the complementary error function of x: erfc(x) = 1 - erf(x).

etime

CALL etime (tarray,result) | REAL FUNCTION etime (tarray)
REAL, OPTIONAL, INTENT (OUT) :: tarray(2)

REAL, OPTIONAL, INTENT (OUT) :: result

Returns in seconds the time since the start of the process' execution.

Page 17

exit
CALL exit (code)
INTEGER, OPTIONAL :: code

Exit a program with status 'code' after closing open Fortran i/0 units.

fdate
CALL fdate (date) | CHARACTER FUNCTION fdate ()
CHARACTER (LEN=*) :: date

Returns the current date and time as: Day Mon dd hh:mm:ss yyyy

flush
CALL flush (unit)
INTEGER :: unit

Flushes the Fortran file “unit’ currently open for output.

fnum
INTEGER FUNCTION fnum(unit)
INTEGER, INTENT (IN) :: unit

Returns the file descriptor number corresponding to “unit’. (Unix)

fstat

CALL fstat (unit,sarray,status) | INTEGER FUNCTION fstat(file,sarray)
INTEGER :: unit

INTEGER, INTENT (OUT) :: sarray(1l3)

INTEGER, INTENT (OUT) :: status

Obtains data about the file open on Fortran I/O unit 'unit' and places them in the array 'sarray'. The values in this array are extracted
from the stat structure as returned by fstat(2) q.v., as follows:

1. File mode
2. Inode number
3. ID of device containing directory entry for file
4. Device id (if relevant)
5. Number of links
6. Owner's uid
7. Owner's gid
8. File size (bytes)
9. Last access time
10. Last modification time
11. Last file status change time
12. Preferred i/o block size
13. Number of blocks allocated
ftell
INTEGER FUNCTION ftell (unit)
INTEGER, INTENT (IN) :: unit

Returns the current offset of Fortran file ‘unit' (or -1 if 'unit' is not open).

g95 runtime start
void g95 runtime start(int argc, char *argv[])

Force an initialization of the g95 runtime library from C. This may be required in C programs calling Fortran routines, and
linked using g95. Use before calling Fortran routines. Call 295 runtime_stop() when done. More information here.

gamma
REAL FUNCTION gamma (x)
REAL, INTENT(IN) :: x

Returns an approximation for gamma(x).

Page 18

http://www.g95.org/docs.html#interface
http://www.g95.org/docs.html#interface

getarg

CALL getarg(pos, value)

INTEGER :: pos

CHARACTER (LEN=*) , INTENT (OUT) :: value

Sets 'value' to the pos-th command-line argument.

get command
CALL get command (command, length, status)

CHARACTER (LEN=*) :: command
INTEGER, OPTIONAL :: length
INTEGER, OPTIONAL :: status

Returns the command that invoked the program.

get command argument
CALL get command argument (number,value,length,status)

INTEGER :: number

CHARACTER (LEN=*) :: value

INTEGER, OPTIONAL, INTENT (OUT) :: length
INTEGER, OPTIONAL, INTENT (OUT) :: status

Returns the command line argument ‘number’ in ‘value’.

getcwd
INTEGER FUNCTION getcwd (name)
CHARACTER (LEN=*) :: name

Returns the current working directory in ‘name’.

getenv

CALL getenv (variable,value)

CHARACTER (LEN=*) :: variable

CHARACTER (LEN=*) , INTENT (OUT) :: value

Returns the value of the environment variable in ‘value’.

get environment variable
CALL get environment variable (name,value,length,status,trim name)
CHARACTER (LEN=*) :: name

CHARACTER (LEN=*), OPTIONAL, INTENT (OUT) :: value
INTEGER, OPTIONAL, INTENT (OUT) :: length
INTEGER, OPTIONAL, INTENT(OUT) :: status
LOGICAL, OPTIONAL :: trim name

Returns the value of the environment variable ‘name’ in ‘value’, its length in ‘length’, and sets ‘status’ = 0 if successful. If
‘trim_name’ is .true., trailing blanks are trimmed.

getlog
CALL getlog (name)
CHARACTER (LEN=*) , INTENT (OUT) :: name

Returns the login name for the process in ‘name’.

getgid
INTEGER FUNCTION getgid()

Returns the group id for the current process.

getpid ()
INTEGER FUNCTION getpid()

Returns the process id for the current process.

Page 19

getuid
INTEGER FUNCTION getuid()

Returns the user's id.

hostnm
INTEGER FUNCTION hostnm (name)
CHARACTER (LEN=*) :: name

Fills 'name' with the system's host name.

iargc
INTEGER FUNCTION iargc()

Returns the number of command-line arguments (not including the program name itself).

isatty
LOGICAL FUNCTION isatty(unit)
INTEGER, INTENT (IN) :: unit

Returns .true. if and only if the Fortran I/O unit specified by “unit’ is connected to a terminal device.

isnan
LOGICAL FUNCTION isnan (x)
REAL :: x

Tests whether ‘x’ is Not-a-Number (NaN).

link

INTEGER FUNCTION link(pathl,path2)
CHARACTER (LEN=*) , INTENT (IN) :: pathl
CHARACTER (LEN=*) , INTENT (IN) :: path2

Makes a (hard) link from file ‘path1' to ‘path2'.

Inblnk
INTEGER FUNCTION lnblnk(string)
CHARACTER (LEN=*) , INTENT (IN) :: string

Alias for len_trim; returns the index of the last non-blank character in ‘string’.

lstat

CALL lstat(file,sarray,status) | INTEGER FUNCTION stat(file,sarray)
CHARACTER (LEN=*) :: file

INTEGER, DIMENSION(13), INTENT(OUT) :: sarray

INTEGER, INTENT (OUT) :: status

If 'file' is a symbolic link it returns data on the link itself. See Fstat() for further details.

new line
CHARACTER FUNCTION new_line(a)
CHARACTER :: a

Returns a new line character, achar(10)
rand

REAL FUNCTION rand (x)
INTEGER, OPTIONAL :: x

Returns a uniform quasi-random number between 0 and 1. If x is 0, the next number in sequence is returned; if X is 1, the
generator is restarted by calling ‘srand(0)’; if x has any other value, it is used as a new seed with srand.

Page 20

rename
CALL rename (pathl, path2, status)

CHARACTER (LEN=*) :: pathl
CHARACTER (LEN=%*) , INTENT (OUT) :: path2
INTEGER, OPTIONAL, INTENT (OUT) :: status

Renames the file ‘pathl’ to ‘path2'. If the ‘status’ argument is supplied, it contains 0 on success or an error code otherwise
upon return.

secnds
INTEGER FUNCTION secnds (t)
REAL, INTENT(IN) :: t

Returns the local time in seconds since midnight minus the value t.

signal

CALL signal (signal,handler,status) | INTEGER FUNCTION (signal,handler)
INTEGER :: signal

PROCEDURE :: handler

INTEGER :: status

Calls the unix ‘signal’ routine.

sizeof
INTEGER FUNCTION sizeof (object)

The argument ‘object’ is the name of an expression or type.
Returns the size of ‘object’ in bytes.

sleep
CALL sleep(seconds)
INTEGER :: seconds

Causes the process to pause for ‘seconds’ seconds.

srand
CALL srand(seed)
INTEGER :: seed

Re-initializes the random number generator with the seed in 'seed'.

stat

CALL stat(file,sarray,status) | INTEGER FUNCTION stat(file,sarray)
CHARACTER (LEN=*) :: file

INTEGER, INTENT (OUT) :: sarray(1l3)

INTEGER, INTENT (OUT) :: status

Obtains data about the given file and places it in the array ‘sarray’. See Fstat()

system

CALL system(cmd, result) | INTEGER FUNCTION system(cmd)
CHARACTER (LEN=*) :: cmd

INTEGER, OPTIONAL :: result

Passes the command ‘cmd’ to a shell.

time
INTEGER FUNCTION time ()

Returns the current time encoded as an integer in the manner of the UNIX function 'time'.

Page 21

unlink

CALL unlink(file,status) | INTEGER FUNCTION unlink(file)
CHARACTER (LEN=*) :: file
INTEGER, INTENT (OUT) :: status

Unlink the file 'file'. (Unix)

$val () and %$ref ()

Allow Fortran procedures to call C functions.

Links

The g95 home page: http://www.g95.org

Documentation: http://www.g95.org/docs.html

Fortran 2003: http://j3-fortran.org/doc/standing/2003/007.pdf
This manual: http://www.g95.0org/G95Manual.pdf

Cool Features: http://www.g95.0rg/cool.html

Compiling g95: http://www.g95 .org/src.html

Source code: http://ftp.g95.0rg/g95 source.tgz

Support newsgroup: http://groups.google.com/group/gg95/

Bug reports: andyv@firstinter.net.

Authors: See the file AUTHORS for a list of contributors to g95.

About this Manual

This manual is maintained by Douglas Cox; please report any errors or omissions to: tcc@sentex.net. While most g95
extensions and g95-specific compiler options are listed here, this version of the manual is not intended to be a Fortran 95
language reference. Documentation for Fortran 95 and programming tutorials can be easily found on the Web. See the GCC
documentation for additional compiler and linker options, and optimization options appropriate for your system.

(95 is still being developed, so discrepancies between the manual and the latest version of the compiler may sometimes
occur. The documentation at http://www.g95.org/docs.html is generally more current.

This manual was updated 20 August, 2006.

Copyright Statement

Copyright © 2006 by the Free Software Foundation.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation
License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no
Front-Cover Texts, and no Back-Cover Texts. A copy of the GNU Free Documentation License is provided at:
http://www.gnu.org/licenses/fdl.txt.

Page 22

http://www.g95.org
http://www.g95.org/docs.html
http://j3-fortran.org/doc/standing/2003/007.pdf
http://www.g95.org/G95Manual.pdf
http://www.g95.org/cool.html
http://www.g95.org/src.html
http://www.g95.org/g95_source.tgz
http://groups.google.com/group/gg95/
mailto:andyv@firstinter.net
mailto:tcc@sentex.net
http://gcc.gnu.org/onlinedocs/gcc-4.0.1/gcc/index.html
http://www.g95.org/docs.html
http://www.gnu.org/licenses/fdl.txt

	Page 1
	SYNOPSIS

	Page 2
	Page 3
	Preprocessor Options
	Options Controlling Fortran Dialect
	FortranOp

	Page 4
	Page 5
	CodeGen

	Page 6
	Directory Options
	Environment Variables

	Page 7
	Page 8
	Runtime Error Codes

	Page 9
	Fortran 2003 Features
	Interfacing with g95 programs

	Page 10
	Using the Random Number Generator
	Predefined Macros
	Key

	Page 11
	Page 12
	Corefile
	Smart

	Page 13
	Installation Notes

	Page 14
	Running G95

	Page 15
	G95 Extensions
	CALL abort\(\)
	access
	algama
	besj0
	besj1
	besjn

	Page 16
	besy0
	besy1
	besyn
	chdir
	chmod
	command_argument_count
	dbesj0
	dbesj1
	dbesjn
	dbesy0

	Page 17
	dbesy1
	dbesyn
	DCMPLX\(\)
	derf
	derfc
	DFLOAT\(\)
	DREAL\(\)
	dtime
	erf
	ErFC\(X\)
	etime

	Page 18
	CALL Exit\(Status\)
	Fdate\(\)
	CALL Flush\(Unit\)
	fstat
	ftell
	gamma

	Page 19
	CALL GetArg\(Pos, Value\)
	get_command
	get_command_argument
	getcwd
	getenv
	get_environment_variable
	getlog
	GetPId\(\)

	Page 20
	getuid
	hostnm
	isatty
	isnan
	lnblnk
	lstat
	new_line
	Rand\(Flag\)

	Page 21
	rename
	secnds
	CALL Rename\(Path1, Path2, Status\)
	signal
	sizeof
	CALL Sleep\(Seconds\)
	CALL Srand\(Seed\)
	stat
	system
	Time\(\)

	Page 22
	CALL Unlink\(File, Status\)
	%VAL\(\) and %REF\(\)
	Links
	COPYRIGHT
	About

