
It’s Free Crunch Time

http://www.g95.org

Key G95 Features
• Free Fortran 95 compliant compiler.
• Current (October 2008) g95 version is 0.92.
• GNU Open Source, GPL license.
• Operation of compiled programs can be modified by a large list of environment variables, documented in

the compiled program itself.
• TR15581– Allocatable dummy arguments, derived type components.
• F2003 style procedure pointers, structure constructors, interoperability
• F2003 intrinsic procedures and modules.
• Dummy arguments of type VALUE in subroutine are passed by value.
• Comma option in OPEN, READ, and WRITE for denoting decimal point.
• Square brackets [and] may be used for array constructors.
• IMPORT statement, used in an interface body to enable access to entities of the host scoping unit.
• MIN() and MAX() for character as well as numeric types.
• OPEN for “Transparent” or stream I/O.
• Backwards compatibility with g77’s Application Binary Interface (ABI).
• Default integers of 32 bits or 64 bits available.
• Invoke SYSTEM() command.
• Tabbed source allowed.
• Symbolic names with $ option.
• Hollerith data.
• DOUBLE COMPLEX extension.
• Varying length for named COMMON.
• Mix numeric and character in COMMON and EQUIVALENCE.
• INTEGER kinds: 1, 2, 4, 8.
• LOGICAL kinds: 1, 2, 4, 8.
• REAL kinds : 4, 8, (16 is experimental).
• REAL(KIND=10) for x86-compatible systems. 19 digits of precision, value range 10±4931 .
• List-formatted floating point output prints the minimal number of digits necessary to uniquely distinguish

the number.
• VAX style debug (D) lines.
• C style string constants option (e.g. ’hello\nworld’).
• \ and $ edit descriptors.
• VAX style system intrinsics (SECNDS etc.)
• Unix system extensions library (getenv, etime, stat, etc.)
• Detect non-conformant or non-allocated arrays at run-time - see Table IV at:

http://ftp.aset.psu.edu/pub/ger/fortran/test/results.txt
• Detection of memory leaks - see Table V at:

http://ftp.aset.psu.edu/pub/ger/fortran/test/results.txt
• Traceback of runtime errors.
• Smart compile feature prevents module compile cascades.
• F compatibility option. See http://www.fortran.com/F. G95 can be built as an F compiler.
• Program suspend/resume feature available for x86/Linux.
• Obsolete real loop index requires compiling with -freal-loops.
• Quick response by developer on bug reports is typical.
• Builds with GCC 4.0.3 to 4.1.2 release versions.
• Available for Linux/x86, PowerPC, 64-bit Opteron, 64-bit Itanium, 64-bit Alpha.
• Available for Windows/Cygwin, MinGW, & Interix.
• Available for OSX on Power Mac G4, x86-OSX.
• Available for FreeBSD on x86, HP-UX 11, Sparc-Solaris, x86-Solaris, OpenBSD, NetBSD, AIX, IRIX,

Tru64 UNIX on Alpha.
• Fink versions are also available.
• Binaries of ’stable’ and current versions for most platforms are available at http://ftp.g95.org.

1

• Supports the CONVERT= specifier in OPEN statements to specify endian conversion. Legal values are
’big endian’, ’little endian’, ’native’ and ’swap’.

2

Every now and then, I get to meet someone that I’ve exchanged email with about g95. The most
frequent comment that I get in these situations is what an extraordinary job that I am doing alone. I always
laugh and point out that I’ve never done it alone. The number of people who have actively helped with g95
is probably close to a thousand or so. The assumption is that the person doing writing the code is doing all
the work, when in reality people who distill crashes down to a dozen lines of code are in fact performing an
extremely valuable service, one that is frequently overlooked. Writing something as complicated as a modern
fortran compiler is not something you do by yourself. I know.

Like most things, g95 was born out of frustration. I wrote my PhD thesis code in fortran 77 using
g77. Fortran is such a wonderful language for numerical computation– it is a quick and dirty language
for people who care more about the answer than writing the program. My thesis code had a lot of fairly
sophisticated data structures in it– linked lists, octrees, sparse matrices, supporting finite element grid
generation, solving Poisson’s equation, multipole expansions, conjugate gradient minimization and lots of
computational geometry. Because I was using fortran 77, the code ended up very clunky and could have
benefitted immensely from dynamic memory allocation and derived types. And my thesis was winding down
and I needed a new challenge.

Beyond the convenience of more advanced language features, I’ve also been greatly inspired by the work
of Bill Kahan. The thing I came away with after reading many of Bill’s papers has been the idea that even
though numerical calculations are tricky, ways can be found to do things such that errors are reduced to the
point where no one cares about them any longer. The user is often at the mercy of the library author at
this point.

Although the compiler is the cool part, it is the libraries that have always interested me more. The
actions of the compiler are fairly strictly defined by the standard, and it is in the library that innovation and
experimentation can roam free. Even when it was in a fairly primitive state, there were already more bells
and whistles in the library compared to other vendors. The corefile resume feature is something I’d wanted
for years before actually getting the chance to implement it.

It’s been a lot of fun writing g95, and I look forward to maintaining it in the decades ahead.

Andy Vaught
Mesa, Arizona
October 2006

3

License
G95 itself is licensed under the GNU General Public License (GPL). For all the legal details, see

http://www.gnu.org/licenses/gpl.html.
The runtime library is mostly GPL and contains an exception to the GPL that gives g95 users the right

to link the g95 libraries to codes not covered under the GPL and to distribute linked combinations without
causing the resulting programs to be covered by the GPL, or become affected by the GPL in any way.

Installation Notes
Unix (Linux/OSX/Solaris/Irix/etc.):
Open a console, and go to the directory in which you want to install g95. To download and install g95, run
the following commands:

wget -O - http://ftp.g95.org/g95-x86-linux.tgz | tar xvfz -
ln -s $PWD/g95-install/bin/i686-pc-linux-gnu-g95 /usr/bin/g95

The following files and directories should be present:
./g95-install/
./g95-install/bin/
./g95-install/bin/i686-pc-linux-gnu-g95
./g95-install/lib/gcc-lib/i686-pc-linux-gnu/4.1.1/
./g95-install/lib/gcc-lib/i686-pc-linux-gnu/4.1.1/f951
./g95-install/lib/gcc-lib/i686-pc-linux-gnu/4.1.1/crtendS.o
./g95-install/lib/gcc-lib/i686-pc-linux-gnu/4.1.1/crtend.o
./g95-install/lib/gcc-lib/i686-pc-linux-gnu/4.1.1/crtbeginT.o
./g95-install/lib/gcc-lib/i686-pc-linux-gnu/4.1.1/crtbeginS.o
./g95-install/lib/gcc-lib/i686-pc-linux-gnu/4.1.1/crtbegin.o
./g95-install/lib/gcc-lib/i686-pc-linux-gnu/4.1.1/cc1
./g95-install/lib/gcc-lib/i686-pc-linux-gnu/4.1.1/libf95.a
./g95-install/lib/gcc-lib/i686-pc-linux-gnu/4.1.1/libgcc.a
./g95-install/INSTALL
./g95-install/G95Manual.pdf

The file cc1 is a symbolic link to f951 in the same directory.

Cygwin
The -mno-cygwin option allows the Cygwin version of g95 to build executables that do not require

access to the file cygwin1.dll in order to work, and so can be easily run on other systems. Also the ex-
ecutables are free of restrictions attached to the GNU GPL license. To install a Cygwin version with a
working -mno-cygwin option, you will need the mingw libraries installed, available from the Cygwin site at
http://www.cygwin.com.
Download the binary from http://ftp.g95.org/g95-x86-cygwin.tgz to your root Cygwin directory (usu-
ally c:\Cygwin). Start a Cygwin session, and issue these commands:

cd /
tar -xvzf g95-x86-cygwin.tgz
This installs the g95 executable in the /usr/local/bin directory structure. Caution: Do not use Winzip

to extract the files from the tarball or the necessary links may not be properly set up.

MinGW
The g95 binaries for the MS-Windows environment are packaged as self-extracting installers. Two ver-
sions are currently available. Windows 98 users should use the g95 package built using gcc 4.0.4, at
http://ftp.g95.org/g95-MinGW.exe. Windows NT, XP and 2000 users have the option to use either
the same package or one built with gcc 4.1.2, available at http://ftp.g95.org/g95-MinGW-41.exe.

The free MinGW/Msys system provides the GNU GCC files needed by g95, which include ld.exe (the
linker), and as.exe (the GNU assembler) from the binutils package, available at http://www.mingw.org.

4

The installer script handles two kinds of installation. If no MinGW is found, it installs g95 along with some
essential MinGW binutils programs and libraries in a directory selected by the user. Include the install
directory in your PATH, and set the environment variable LIBRARY PATH to point to your install directory. If
installing the g95-MinGW-41.exe package, use G95 LIBRARY PATH instead.

If installing the g95-MinGW-41.exe package, (which won’t work on Windows 98 and Windows ME) set
the environment variable

G95 LIBRARY PATH=path-to-MinGW/lib

The g95-MinGW-41.exe package will not conflict with gfortran or gcc.
If MinGW is already installed on your system, installing g95 in the root MinGW directory, (generally

C:\mingw) is recommended to avoid potential conflicts. If the installer detects MinGW, it attempts installing
in the MinGW file system. Include the MinGW\bin directory in your PATH, and set the environment variable

LIBRARY PATH=path-to-MinGW/lib

On Windows 98 and Windows ME this generally requires editing the system autoexec.bat file, and a reboot
is needed for the changes to take effect.

Windows XP Users Note: MinGW currently allows a mere 8 megabytes for the heap. If your application
requires access to more memory, try compiling with: -Wl,--heap=0x01000000. Use larger hexadecimal
values for --heap until your program runs.

Running G95
G95 determines how an input file should be compiled based on its extension. Allowable file name extensions
for Fortran source files are limited to .f, .F, .for, .FOR, .f90, .F90, .f95, .F95, .f03 and .F03. The
filename extension determines whether Fortran sources are to be treated as fixed form, or free format. Files
ending in .f, .F, .for, and .FOR are assumed to be fixed form source compatible with old f77 files. Files
ending in .f90, .F90, .f95, .F95, .f03 and .F03 are assumed to be free source form. Files ending in
uppercase letters are pre-processed with the C preprocessor by default, files ending in lowercase letters are
not pre-processed by default.

The basic options for compiling Fortran sources with g95 are:
-c Compile only, do not run the linker.
-v Show the actual programs invoked by g95 and their arguments. Particularly useful for tracking path

problems.
-o Specify the name of the output file, either an object file or the executable. An .exe extension is

automatically added on Windows systems. If no output file is specified, the default output file is
named a.out on unix, or a.exe on Windows systems.

Simple examples:

g95 -c hello.f90

Compiles hello.f90 to an object file named hello.o.

g95 hello.f90

Compiles hello.f90 and links it to produce an executable a.out (on unix), or a.exe (on MS Windows
systems).

g95 -c h1.f90 h2.f90 h3.f90

Compiles multiple source files. If all goes well, object files h1.o, h2.o and h3.o are created.

g95 -o hello h1.f90 h2.f90 h3.f90

Compiles multiple source files and links them together to an executable file named hello on unix, or
hello.exe on MS Windows systems.

5

Option Synopsis
g95 [-c | -S | -E] Compile & assemble | Produce assembly code | List source

[-g] [-pg] Debug options
[-O[n]] Optimization level, n = 0, 1, 2, 3
[-s] Strip debug info
[-Wwarn] [-pedantic] Warning switches
[-Idir] Include directory to search
[-Ldir] Library directory to search
[-D macro[=value]...] Define macro
[-U macro] Undefine macro
[-f option ...] General compile options
[-m machine-option ...] Machine specific options. See GCC manual
[-o outfile] Name of outfile
infile

G95 Options
Usage: g95 [options] file...
-pass-exit-codes Exit with highest error code from a phase.
--help Display this information.
--target-help Display target specific command line options. (Use ’-v --help’ to display

command line options of sub-processes).
-dumpspecs Display all of the built in spec strings.
-dumpversion Display the version of the compiler.
-dumpmachine Display the compiler’s target processor.
-print-search-dirs Display the directories in the compiler’s search path.
-print-libgcc-file-name Display the name of the compiler’s companion library.
-print-file-name=lib Display the full path to library lib.
-print-prog-name=prog Display the full path to compiler component prog.
-print-multi-directory Display the root directory for versions of libgcc.
-print-multi-lib Display the mapping between command line options and multiple library

search directories.
-print-multi-os-directory Display the relative path to OS libraries.
-Wa,options Pass comma-separated options on to the assembler.
-Wp,options Pass comma-separated options on to the preprocessor.
-Wl,options Pass comma-separated options on to the linker.
-Xassembler arg Pass arg to the assembler.
-Xpreprocessor arg Pass arg to the preprocessor.
-Xlinker arg Pass arg to the linker.
-save-temps Do not delete intermediate files.
-pipe Use pipes rather than intermediate files.
-time Time the execution of each subprocess. Unavailable on some platforms

(MinGW, OSX).
-specs=file Override built-in specs with the contents of file.
-std=standard Assume that the input sources are for standard.
-B directory Add directory to the compiler’s search paths.
-b machine Run gcc for target machine, if installed.
-V version Run gcc version number version, if installed.
-v Display the programs invoked by the compiler.
-M Produce a Makefile dependency lines on standard output.
-### Like -v but options quoted and commands not executed.
-E Pre-process only; do not compile, assemble or link.
-S Compile only; do not assemble or link.

6

-c Compile and assemble, but do not link.
-o file Place the output into file.
-x language Specify the language of the following input files. Permissible languages in-

clude: c, c++, assembler, none; ‘none’ means revert to the default behavior
of guessing the language based on the file’s extension.

Options starting with -g, -f, -m, -O, -W, or --param are automatically passed on to the various sub-
processes invoked by g95. In order to pass other options on to these processes the -Wletter options must be
used. For bug reporting instructions, please see: http://www.g95.org.

By default, programs compiled with g95 have no optimization. The n in -On specifies the level opti-
mization, from 0 to 3. Zero means no optimization, and higher numbers imply more aggressive optimization.
Specifying optimization gives the compiler the license to change the code in order to make it faster. The
results of calculations are often affected in subtle ways. Using -O is the same as -O1.

Significant speedups can be obtained specifying at least -O2 -march=arch where arch is your processor
architecture, ie pentium4, athlon, opteron, etc. Further Fortran typical options are -funroll-loops,
-fomit-frame-pointer, -malign-double and -msse2. For information on all the GCC options available
when compiling with g95, see: http://gcc.gnu.org/onlinedocs/gcc-4.1.1/gcc.

Preprocessor Options
G95 can handle files that contain C preprocessor constructs.
-cpp Force the input files to be run through the C preprocessor
-no-cpp Prevent the input files from being pre-processed
-D name[=value] Define a preprocessor macro
-U name Undefine a preprocessor macro
-E Show pre-processed source only
-I directory Append directory to the include and module files search path. Files are searched for in

various directories in this order: Directory of the main source file, the current directory,
directories specified by -I, directories specified in the G95 INCLUDE PATH environment
variable and finally the system directories.

Fortran Options
-Wall Enable most warning messages.
-Werror Change warnings into errors.
-Werror=numbers Change the comma-separated list of warnings into errors.
-Wextra Enable warnings not enabled by -Wall. These are

-Wobsolescent, -Wunused-module-vars, -Wunused-module-procs,
-Wunused-internal-procs, -Wunused-parameter, -Wunused-types,
-Wmissing-intent and -Wimplicit-interface.

-Wglobals Cross-check procedure use and definition within the same source file. On by
default, use -Wno-globals to disable.

-Wimplicit-none Same as -fimplicit-none.
-Wimplicit-interface Warn about using an implicit interface.
-Wline-truncation Warn about truncated source lines.
-Wmissing-intent Warn about missing intents on format arguments.
-Wobsolescent Warn about obsolescent constructs.
-Wno=numbers Disable a comma separated list of warnings indicated by numbers.
-Wuninitialized Warn about variables used before initialized. Requires -O2.
-Wunused-internal-procs Warn if an internal procedure is never used.
-Wunused-vars Warn about unused variables.
-Wunused-types Warn about unused module types. Not implied by -Wall.
-Wunset-vars Warn about unset variables.
-Wunused-module-vars Warn about unused module variables. Useful for building ONLY clauses.
-Wunused-module-procs Warn about unused module procedures. Useful for building ONLY clauses.

7

-Wunused-parameter Warn about unused parameters. Not implied by -Wall.
-Wprecision-loss Warn about precision loss in implicit type conversions.
-fbackslash Interpret backslashes in character constants as escape codes. This option is

on by default. Use the -fno-backslash to treat backslashes literally.
-fc-binding Print C prototypes of procedures to standard output.
-fd-comment Make D lines executable statements in fixed form.
-fdollar-ok Allow dollar signs in entity names.
-fendian=value Force the endian-ness of unformatted reads and writes. The value must be

big or little. Overrides runtime environment variables.
-ffixed-form Assume that the source file is fixed form.
-ffixed-line-length-132 132 character line width in fixed mode.
-ffixed-line-length-80 80 character line width in fixed mode.
-ffree-form Assume that the source file is free form.
-ffree-line-length-huge Allow very large source lines (10k).
-fimplicit-none Specify that no implicit typing is allowed, unless overridden by explicit

IMPLICIT statements.
-fintrinsic-extensions Enable g95-specific intrinsic functions even in a -std= mode.
-fintrinsic-extensions= Include selected intrinsic functions even in a -std= mode. The list is

comma-separated and case insensitive.
-fmod=directory Put module files in directory.
-fmodule-private Set default accessibility of module-entities to PRIVATE.
-fmultiple-save Allow the SAVE attribute to be specified multiple times.
-fone-error Force compilation to stop after the first error.
-ftr15581 Enable the TR15581 allocatable array extensions even in -std=F or

-std=f95 modes.
-std=F Warn about non-F features. See http://www.fortran.com/F.
-std=f2003 Strict Fortran 2003 checking.
-std=f95 Strict Fortran 95 checking.
-i4 Set kinds of integers without specification to kind=4 (32 bits).
-i8 Set kinds of integers without specification to kind=8 (64 bits).
-r4 Set kinds of reals without specification to kind=4.
-r8 Set kinds of reals without kind specifications to double precision.
-r16 Set kinds of reals without specification to kind=16.
-d8 Implies -i8 and -r8.

Code Generation Options
-fbounds-check Check array and substring bounds at runtime.
-fcase-upper Make all public symbols uppercase.
-fleading-underscore Add a leading underscore to public names.
-fonetrip Execute DO-loops at least once. (Buggy FORTRAN 66).
-fpack-derived Try to layout derived types as compactly as possible. Requires less memory,

but may be slower.
-freal-loops Allow real variables in DO-loops.
-fqkind=n Set the kind for a real with the ’q’ exponent to n.
-fsecond-underscore Append a second trailing underscore in names having an underscore (default).

Use -fno-second-underscore to suppress.
-fshort-circuit Cause the .AND. and .OR. operators to not compute the second operand if the

value of the expression is known from the first operand.
-fsloppy-char Suppress errors when writing non-character data to character descriptors, and

allow comparisons between INTEGER and CHARACTER variables.
-fstatic Put local variables in static memory where possible. This is not the same as

linking things statically (-static).

8

-ftrace= -ftrace=frame will insert code to allow stack tracebacks on abnormal end
of program. This will slow down your program. -ftrace=full additionally
allows finding the line number of arithmetic exceptions (slower). Default is
-ftrace=none.

-funderscoring Append a trailing underscore in global names. This option is on by default,
use -fno-underscoring to suppress.

-max-frame-size=n How large in bytes that a single stack frame will get before arrays are allocated
dynamically.

-finteger=n Initialize uninitialized scalar integer variables to n.
-flogical=value Initialize uninitialized scalar logical variables. Legal values are none, true and

false.
-freal=value Initialize uninitialized scalar real and complex variables. Legal values are none,

zero, nan, inf, +inf and -inf.
-fpointer=value Initialize scalar pointers. Legal values are none, null and invalid.
-fround=value Controls compile-time rounding. value can be nearest, plus, minus and zero.

Default is round to nearest, plus is round to plus infinity, minus is minus
infinity, zero is towards zero.

-fzero Initialize numeric types to zero, logical values to false and pointers to null.
The other initialization options override this one.

Directory Options
-I directory Append directory to the include and module files search path.
-Ldirectory Append directory to the library search path.
-fmod=directory Put module files in directory

Environment Variables
The g95 runtime environment provides many options for tweaking the behavior of your program once

it runs. These are controllable through environment variables. Running a g95-compiled program with the
--g95 option will dump all of these options to standard output. The values of the various variables are
always strings, but the strings are interpreted as integers or boolean truth values. Only the first character
of a boolean is examined and must be ’t’, ’f’, ’y’, ’n’, ’1’ or ’0’ (uppercase OK too). If a value is bad, no
error is issued and the default is used. For GCC environment variables used by g95, such as LIBRARY PATH,
see the GCC documentation.

G95 STDIN UNIT Integer Unit number that will be pre-connected to standard input. No pre-
connection if negative, default is 5.

G95 STDOUT UNIT Integer Unit number that will be pre-connected to standard output. No
pre-connection if negative, default is 6.

G95 STDERR UNIT Integer Unit number that will be pre-connected to standard error. No pre-
connection if negative, default is 0.

G95 USE STDERR Boolean Sends library output to standard error instead of standard output.
Default is Yes.

G95 ENDIAN String Endian format to use for I/O of unformatted data. Values are BIG,
LITTLE or NATIVE. Default is NATIVE.

G95 CR Boolean Output carriage returns for formatted sequential records. Default
TRUE on non-Cygwin/Windows, FALSE elsewhere.

G95 INPUT CR Boolean Treat a carriage return-linefeed as a record marker instead of just a
linefeed. Default TRUE.

G95 IGNORE ENDFILE Boolean Ignore attempts to read past the ENDFILE record in sequential
access mode. Default FALSE.

9

G95 TMPDIR String Directory for scratch files. Overrides the TMP environment variable.
If TMP is not set /var/tmp is used. No default.

G95 UNBUFFERED ALL Boolean If TRUE, all output is unbuffered. This will slow down large writes
but can be useful for forcing data to be displayed immediately. De-
fault is FALSE.

G95 SHOW LOCUS Boolean If TRUE, print filename and line number where runtime errors hap-
pen. Default is TRUE.

G95 STOP CODE Boolean If TRUE, stop codes are propagated to system exit codes. Default
TRUE.

G95 OPTIONAL PLUS Boolean Print optional plus signs in numbers where permitted. Default
FALSE.

G95 DEFAULT RECL Integer Default maximum record length for sequential files. Most useful for
adjusting line length of pre-connected units. Default is 50000000.

G95 LIST SEPARATOR String Separator to use when writing list output. May contain any number
of spaces and at most one comma. Default is a single space.

G95 LIST EXP Integer Last power of ten which does not use exponential format for list
output. Default 6.

G95 COMMA Boolean Use a comma character as the default decimal point for I/O. De-
fault FALSE.

G95 EXPAND UNPRINTABLE Boolean For formatted output, print otherwise unprintable characters with
\-sequences. Default FALSE.

G95 QUIET Boolean Suppress bell characters (\a) in formatted output. Default FALSE.
G95 SYSTEM CLOCK Integer Number of ticks per second reported by the SYSTEM CLOCK() intrin-

sic. Zero disables the clock. Default 100000.
G95 SEED RNG Boolean If TRUE, seeds the random number generator with a new seed

when the program is run. Default FALSE.
G95 MINUS ZERO Boolean If TRUE, prints zero values without a minus sign in formatted

(non-list) output, even if the internal value is negative or minus
zero. This is the traditional but nonstandard way of printing zeros.
Default FALSE.

G95 ABORT Boolean If TRUE, dumps core on abnormal program end. Useful for finding
the locus of the problem. Default FALSE.

G95 MEM INIT String How to initialize allocated memory. Default value is NONE for no
initialization (faster), NAN for a Not-a-Number with the mantissa
0x00f95 or a custom hexadecimal value.

G95 MEM SEGMENTS Integer Maximum number of still-allocated memory segments to display
when program ends. 0 means show none, less than 0 means show
all. Default 25.

G95 MEM MAXALLOC Boolean If TRUE, shows the maximum number of bytes allocated in user
memory during the program run. Default FALSE.

G95 MEM MXFAST Integer Maximum request size for handing requests in from fastbins. Fast-
bins are quicker but fragment more easily. Default 64 bytes.

G95 MEM TRIM THRESHOLD Integer Amount of top-most memory to keep around until it is returned to
the operating system. -1 prevents returning memory to the system.
Useful in long-lived programs. Default 262144.

G95 MEM TOP PAD Integer Extra space to allocate when getting memory from the OS. Can
speed up future requests. Default 0.

G95 SIGHUP String Whether the program will IGNORE, ABORT, DUMP or DUMP-QUIT on
SIGHUP. Default ABORT. Unix only.

G95 SIGINT String Whether the program will IGNORE, ABORT, DUMP or DUMP-QUIT on
SIGINT. Default ABORT. Unix only.

G95 SIGQUIT String Whether the program will IGNORE, ABORT, DUMP or DUMP-QUIT on
SIGQUIT. Default ABORT. Unix only.

10

G95 CHECKPOINT Integer On x86 Linux, the number of seconds between checkpoint corefile
dumps, with zero meaning no dumps.

G95 CHECKPOINT MSG Boolean If TRUE, print a message to stderr when process is checkpointed.
Default TRUE.

G95 FPU NO DENORMALS Boolean Round small numbers to zero instead of going into denormalized
numbers for the MMX floating point unit.

G95 FPU ROUND String Set floating point rounding mode. Values can be NEAREST, UP,
DOWN, ZERO. Default is NEAREST.

G95 FPU PRECISION String Precision of intermediate results. Value can be 24, 53 and 64. De-
fault 64. Only available on x86 and compatibles.

G95 FPU DENORMAL Boolean Raise a floating point exception when denormal numbers are en-
countered. Default FALSE.

G95 FPU INVALID Boolean Raise a floating point exception on an invalid operation. Default
FALSE.

G95 FPU ZERODIV Boolean Raise a floating point exception when dividing by zero. Default
FALSE.

G95 FPU OVERFLOW Boolean Raise a floating point exception on overflow. Default FALSE.
G95 FPU UNDERFLOW Boolean Raise a floating point exception on underflow. Default FALSE.
G95 FPU INEXACT Boolean Raise a floating point exception on precision loss. Default FALSE.
G95 FPU EXCEPTIONS Boolean Whether masked floating point exceptions should be shown after

the program ends. Default FALSE.
G95 UNIT x String Overrides the default unit name for unit x. Default is fort.x
G95 UNBUFFERED x Boolean If TRUE, unit x is unbuffered. Default FALSE.

Runtime Error Codes

Running a g95-compiled program with the --g95 option will dump this list of error codes to standard
output.
-2 End of record
-1 End of file
0 Successful return

Operating system errno codes (1 - 199)
200 Conflicting statement options
201 Bad statement option
202 Missing statement option
203 File already opened in another unit
204 Unattached unit
205 FORMAT error
206 Incorrect ACTION specified
207 Read past ENDFILE record
208 Bad value during read
209 Numeric overflow on read
210 Out of memory
211 Array already allocated
212 Deallocated a bad pointer
213 Bad record number in direct-access file
214 Corrupt record in unformatted sequential-access file
215 Reading more data than the record size (RECL)
216 Writing more data than the record size (RECL)
217 Unknown error code

11

Fortran 2003 Features
G95 implements several features of Fortran 2003. For a discussion of all the new features of Fortran 2003,
see: http://www.fortranplus.co.uk/resources/john reid new 2003.pdf.
• The following intrinsic procedures are available: COMMAND ARGUMENT COUNT(), GET COMMAND ARGUMENT(),

GET COMMAND() and GET ENVIRONMENT VARIABLE()
• Real and double precision DO loop index variables are not implemented in g95.
• Square brackets [and] may be used as an alternative to (/ and /) for array constructors.
• TR 15581 - allocatable derived types. Allows the use of the ALLOCATABLE attribute on dummy arguments,

function results, and structure components.
• Stream I/O - F2003 stream access allows a Fortran program to read and write binary files without worrying

about record structures. Clive Page has written some documentation on this feature, available at:
http://www.star.le.ac.uk/~cgp/streamIO.html.

• IMPORT statement. Used in an interface body to enable access to entities of the host scoping unit.
• European convention for real numbers– a DECIMAL=’COMMA’ tag in OPEN, READ and WRITE statements

allows replacement of the decimal point in real numbers with a comma.
• MIN() and MAX() work with character as well as numeric types.
• A type declaration attribute of VALUE for the dummy argument of a subprogram causes the actual argu-

ment to be passed by value.
• F2003 style structure constructors are supported.
• F2003 style procedure pointers are supported.
• F2003’s move alloc() intrinsic is supported.
• F2003 IEEE support is about half implemented.
• F2003’s BIND(C) construct, ISO C BINDING module providing easier C interoperability.

Interfacing with G95 Programs
While g95 produces stand-alone executables, it is occasionally desirable to interface with other programs,

usually C. The first difficulty that a multi-language program will face is the names of the public symbols.
G95 follows the f2c convention of adding an underscore to public names, or two underscores if the name
contains an underscore. The -fno-second-underscore and -fno-underscoring options can be useful to
force g95 to produce names compatible with your C compiler. Use the nm program to look at the .o files being
produced by both compilers. G95 folds public names to lowercase as well, unless -fcase-upper is given, in
which case everything will be upper case. Module names are represented as module-name MP entity-name.

After linking, there are two main cases: Fortran calling C subroutines and C calling fortran subrou-
tines. For C calling Fortran subroutines, the Fortran subroutines will often call Fortran library subrou-
tines that expect the heap to be initialized in some way. To force a manual initialization from C, call
g95 runtime start() to initialize the fortran library and g95 runtime stop() when done. The prototype
of g95 runtime start() is:

void g95 runtime start(int argc, char *argv[]);

The library has to be able to process command-line options. If this is awkward to do and your pro-
gram doesn’t have a need for command-line arguments, pass argc=0 and argv=NULL. On OSX, include
-lSystemStubs when using g95 to run the linker and linking objects files compiled by GCC.

F2003 provides a number of features that allow easier interfacing with C. The BIND(C) attribute allows
fortran symbols to be created that are more easily referenced from C (or other languages). For example:

SUBROUTINE foo(a) BIND(C)

This form creates a symbol named foo without any underscore name-mangling. All characters are forced to
lowercase. A similar form is:

SUBROUTINE foo(a) BIND(C, name=’Foo1’)

This causes the name of the symbol to be Foo1. Within fortran, the subroutine is still referenced by the
usual foo, FOO or any other case combination.

C programs pass arguments by value, where fortran passes them by reference. F2003 provides the VALUE
attribute to specify dummy arguments that are passed by value. An example would be:

12

SUBROUTINE foo(a)
INTEGER, VALUE :: a
...

A subroutine defined like this is still callable from fortran as well with the restriction that dummy arguments
are no longer associated with actual arguments, and changing a dummy argument will no longer change an
actual argument.

Global variables can similarly be accessed. The following subroutine prints out the value of the VAR
variable, which would otherwise be inaccessible to fortran:

SUBROUTINE print it
INTEGER, BIND(C, name=’VAR’) :: v
PRINT *, v

END SUBROUTINE

Where fortran considers types to have different kinds, C defines everything as distinct types. In order to
specify the same object, F2003 provides an intrinsic module ISO C BINDING which contains mappings from
fortran kinds to C types. When USEd, the following PARAMETERs are defined:

c int Integer kind for C’s int
c short Integer kind for C’s short
c long Integer kind for C’s long
c long long Integer kind for C’s long long
c signed char Integer kind for C’s char
c size t Integer kind for C’s size t
c intptr t Integer kind of the same size as C pointers
c float Real kind for C’s float
c double Real kind for C’s double

There are many other things in ISO C BINDING as well. Using this module, one can write a program:
SUBROUTINE foo

USE, INTRINSIC :: ISO C BINDING
INTEGER(KIND=C INT) :: int var
INTEGER(KIND=C LONG LONG) :: big integer
REAL(KIND=C FLOAT) :: float var
...

Using the Random Number Generator
REAL INTENT(OUT):: harvest CALL random number(harvest)

Returns a REAL scalar or an array of REAL random numbers in harvest, 0 ≤ harvest < 1.
Seeding the random number generator:

INTEGER, OPTIONAL, INTENT(OUT) :: sz
INTEGER, OPTIONAL, INTENT(IN) :: pt(n1)
INTEGER, OPTIONAL, INTENT(OUT) :: gt(n2)
CALL random seed(sz,pt,gt)

sz is the minimum number of default integers required to hold the value of the seed; g95 returns four.
Argument pt is an array of default integers with size n1 ≥ sz, containing user provided seed values. Argument
gt is an array of default integers with size n2 ≥ sz, containing the current seed.

Calling RANDOM SEED() without arguments initializes the seed to a value determined by the current time.
This can be used to generate random sequences that are different for each invocation of the program. The
seed is also initialized to a time-based value on program start if the G95 SEED RNG environment variable is set
to TRUE. If neither of these conditions are true, RANDOM NUMBER() will always generate the same sequence.

The underlying generator is the xor-shift generator developed by George Marsaglia.

13

Predefined Preprocessor Macros
The macros that are always defined are:

G95 0
G95 MINOR 91
FORTRAN 95
GNUC 4

The conditional macros are:
unix windows hpux linux solaris irix aix netbsd freebsd openbsd cygwin

Corefile Resume Feature
On x86 Linux systems, the execution of a g95-compiled program can be suspended and resumed. If you

interrupt a program by sending it the QUIT signal, which is usually bound to control-backslash, the program
will write an executable file named dump to the current directory. Running this file causes the execution of
your program to resume from when the dump was written. The following session illustrates this:

andy@fulcrum:~/g95/g95 % cat tst.f90
b = 0.0
do i=1, 10

do j=1, 3000000
call random number(a)
a = 2.0*a - 1.0
b = b + sin(sin(sin(a)))

enddo
print *, i, b

enddo
end

andy@fulcrum:~/g95/g95 % g95 tst.f90
andy@fulcrum:~/g95/g95 % a.out
1 70.01749
2 830.63153
3 987.717
4 316.48703
5 -426.53815
6 25.407673 (control-\ hit)
Process dumped
7 -694.2718
8 -425.95465
9 -413.81763
10 -882.66223
andy@fulcrum:~/g95/g95 % ./dump
Restarting
............Jumping
7 -694.2718
8 -425.95465
9 -413.81763
10 -882.66223
andy@fulcrum:~/g95/g95 %

Any open files must be present and in the same places as in the original process. If you link against
other languages, this may not work. While the main use is allowing you to preserve the state of a run across
a reboot, other possibilities include pushing a long job through a short queue or moving a running process to
another machine. Automatic checkpointing of your program can be done by setting the environment variable
G95 CHECKPOINT with the number of seconds to wait between dumps. A value of zero means no dumps. New
checkpoint files overwrite old checkpoint files.

14

Smart Compiling
Consider a module foo whose source code resides in a file foo.f95. We can distinguish between two

types of changes to foo.f95:

1. Changes that alter the usage of foo, e.g., by changing the interface to a procedure;
2. Changes that do not alter the usage of foo, but only its implementation, e.g., by fixing a bug in the

body of a procedure.

Both kinds of changes will generally affect the contents of the object file foo.o, but only the first type
of change can alter the contents of foo.mod. When it recompiles a module, g95 is smart enough to detect
whether the .mod file needs updating: after changes of type 2, the old .mod file is retained.

This feature of g95 prevents unnecessary compilation cascades when building a large program. Indeed,
suppose that many different source files depend on foo.mod, either directly (because of a USE FOO statement)
or indirectly (by using a module that uses foo, or by using a module that uses a module that uses foo,
etc). A change of type 1 to foo.f95 will trigger a recompile of all dependant source files; fortunately, such
changes are likely to be infrequent. The more common changes of type 2 cause a recompile only of foo.f95
itself, after which the new object file foo.o can be immediately linked with the other existing object files to
create the updated executable program.

G95 Intrinsic Function Extensions

ACCESS
INTEGER FUNCTION access(filename, mode)

CHARACTER(LEN=*) :: filename
CHARACTER(LEN=*) :: mode

END FUNCTION access
Checks whether the file filename can be accessed with the specified mode, where mode is one or more of the
letters rwxRWX. Returns zero if the permissions are OK, nonzero if something is wrong.

ALGAMA
REAL FUNCTION algama(x)

REAL, INTENT(IN) :: x
END FUNCTION algama

Returns the natural logarithm of Γ(x). ALGAMA is a generic function that takes any real kind.

BESJ0
REAL FUNCTION besj0(x)

REAL, INTENT(IN) :: x
END FUNCTION besj0

Returns the zeroth order Bessel function of the first kind. This function is generic.

BESJ1
REAL FUNCTION besj1(x)

REAL, INTENT(IN) :: x
END FUNCTION besj1

Returns the first order Bessel function of the first kind. This function is generic.

BESJN
REAL FUNCTION besjn(n,x)

INTEGER, INTENT(IN) :: n
REAL, INTENT(IN) :: x

END FUNCTION besjn
Returns the nth order Bessel function of the first kind. This function is generic.

15

BESY0
REAL FUNCTION besy0(x)

REAL, INTENT(IN) :: x
END FUNCTION besy0

Returns the zeroth order Bessel function of the second kind. This function is generic.

BESY1
REAL FUNCTION besy1(x)

REAL, INTENT(IN) :: x
END FUNCTION besy1

Returns the first order Bessel function of the second kind. This function is generic.

BESYN
REAL FUNCTION besyn(n,x)

INTEGER, INTENT(IN) :: n
REAL, INTENT(IN) :: x

END FUNCTION besyn
Returns the nth order Bessel function of the second kind. This function is generic.

CHMOD
INTEGER FUNCTION chmod(file,mode)

CHARACTER(LEN=*), INTENT(IN) :: file
INTEGER, INTENT(IN) :: mode

END FUNCTION chmod
Change unix permissions for a file. Returns nonzero if an error occurs.

DBESJ0
DOUBLE PRECISION FUNCTION dbesj0(x)

DOUBLE PRECISION, INTENT(IN) :: x
END FUNCTION dbesj0

Returns the zeroth order Bessel function of the first kind.

DBESJ1
DOUBLE PRECISION FUNCTION dbesj1(x)

DOUBLE PRECISION, INTENT(IN) :: x
END FUNCTION dbesj1

Returns the first order Bessel function of the first kind.

DBESJN
DOUBLE PRECISION FUNCTION dbesjn(n,x)

INTEGER, INTENT(IN) :: n
DOUBLE PRECISION, INTENT(IN) :: x

END FUNCTION dbesjn
Returns the nth order Bessel function of the first kind.

DBESY0
DOUBLE PRECISION FUNCTION dbesy0(x)

DOUBLE PRECISION, INTENT(IN) :: x
END FUNCTION debsy0

Returns the zeroth order Bessel function of the second kind.

DBESY1
DOUBLE PRECISION FUNCTION dbesy1(x)

DOUBLE PRECISION, INTENT(IN) :: x
END FUNCTION dbesy1

Returns the first order Bessel function of the second kind.

16

DBESYN
DOUBLE PRECISION FUNCTION dbesyn(n,x)

INTEGER, INTENT(IN) :: n
REAL, INTENT(IN) :: x

END FUNCTION dbesyn
Returns the nth order Bessel function of the second kind.

DCMPLX
DOUBLE COMPLEX FUNCTION dcmplx(x,y)
END FUNCTION dcmplx

Double precision CMPLX, x and y may be any numeric type or kind.

DERF
DOUBLE PRECISION FUNCTION derf(x)

DOUBLE PRECISION, INTENT(IN) :: x
END FUNCTION derf

Returns the double precision error function of x.

DERFC
DOUBLE PRECISION FUNCTION derfc(x)

DOUBLE PRECISION, INTENT(IN) :: x
END FUNCTION derfc

Returns the double precision complementary error function of x.

DFLOAT
DOUBLE PRECISION FUNCTION dfloat(x)
END FUNCTION dfloat

Convert a numeric x to double precision. Alias for the DBLE intrinsic.

DGAMMA
DOUBLE PRECISION FUNCTION dgamma(x)

DOUBLE PRECISION, INTENT(IN) :: x
END FUNCTION dgamma

Returns an approximation for Γ(x).

DLGAMA
DOUBLE PRECISION FUNCTION dlgama(x)

DOUBLE PRECISION, INTENT(IN) :: x
END FUNCTION dlgama

Returns the natural logarithm of Γ(x).

DREAL
DOUBLE PRECISION FUNCTION dreal(x)
END FUNCTION dreal

Convert a numeric x to double precision. Alias for the DBLE intrinsic.

DTIME
REAL FUNCTION dtime(tarray)

REAL, OPTIONAL, INTENT(OUT) :: tarray(2)
END FUNCTION dtime

Sets tarray(1) to the number of elapsed seconds of user time in the current process since DTIME was last
invoked. Sets tarray(2) to the number of elapsed seconds of system time in the current process since DTIME
was last invoked. Returns the sum of the two times.

ERF
REAL FUNCTION erf(x)

REAL, INTENT(IN) :: x
END FUNCTION erf

Returns the error function of x. This function is generic.

17

ERFC
REAL FUNCTION erfc(x)

REAL, INTENT(IN) :: x
END FUNCTION erfc

Returns the complementary error function of x. This function is generic.

ETIME
REAL FUNCTION etime(tarray)

REAL, OPTIONAL, INTENT(OUT) :: tarray(2)
END FUNCTION etime

Sets tarray(1) to the number of elapsed seconds of user time in the current process. Sets tarray(2) to the
number of elapsed seconds of system time in the current process. Returns the sum of the two times.

FNUM
INTEGER FUNCTION fnum(unit)

INTEGER, INTENT(IN) :: unit
END FUNCTION fnum

Returns the file descriptor number corresponding to unit. Returns −1 if the unit is not connected.

FSTAT
INTEGER FUNCTION fstat(unit, sarray)

INTEGER, INTENT(IN) :: unit
INTEGER, INTENT(OUT) :: sarray(13)

END FUNCTION fstat
Obtains data about the file open on Fortran I/O unit and places them in the array sarray(). The values
in this array are extracted from the stat structure as returned by fstat(2) q.v., as follows:

sarray(1) Device number,
sarray(2) Inode number,
sarray(3) file mode,
sarray(4) number of links,
sarray(5) Owner uid,
sarray(6) Owner gid,
sarray(7) device type,
sarray(8) file size,
sarray(9) Access time,
sarray(10) Modification time,
sarray(11) Change time,
sarray(12) Block size,
sarray(13) Allocated blocks.

FDATE
CHARACTER(LEN=*) FUNCTION fdate()
END FUNCTION fdate

Returns the current date and time as: Day Mon dd hh:mm:ss yyyy.

FTELL
INTEGER FUNCTION ftell(unit)

INTEGER, INTENT(IN) :: unit
END FUNCTION ftell

Returns the current offset of Fortran file unit or −1 if unit is not open.

GAMMA
REAL FUNCTION gamma(x)

REAL, INTENT(IN) :: x
END FUNCTION gamma

Returns an approximation for Γ(x). GAMMA is a generic function that takes any real kind.

18

GETCWD
INTEGER FUNCTION getcwd(name)

CHARACTER(LEN=*), INTENT(OUT) :: name
END FUNCTION

Returns the current working directory in name. Returns nonzero if there is an error.

GETGID
INTEGER FUNCTION getgid()
END FUNCTION getgid

Returns the group id for the current process.

GETPID
INTEGER FUNCTION getpid()
END FUNCTION getpid

Returns the process id for the current process.

GETUID
INTEGER FUNCTION getuid()
END FUNCTION getuid

Returns the user’s id.

HOSTNM
INTEGER FUNCTION hostnm(name)

CHARACTER(LEN=*), INTENT(OUT) :: name
END FUNCTION hostnm

Sets name with the system’s host name. Returns nonzero on error.

IARGC
INTEGER FUNCTION iargc()
END FUNCTION iargc

Returns the number of command-line arguments (not including the program name itself).

IERRNO
INTEGER FUNCTION ierrno()
END FUNCTION ierrno

Returns the last system error number (corresponding to the C errno).

ISATTY
LOGICAL FUNCTION isatty(unit)

INTEGER, INTENT(IN) :: unit
END FUNCTION isatty

Returns .true. if and only if the Fortran I/O unit specified by unit is connected to a terminal device.

ISNAN
LOGICAL FUNCTION isnan(x)

REAL, INTENT(IN) :: x
END FUNCTION isnan

Returns .true. if x is a Not-a-Number (NaN). This function is generic.

LINK
INTEGER FUNCTION link(path1, path2)

CHARACTER(LEN=*), INTENT(IN) :: path1, path2
END FUNCTION link

Makes a (hard) link from path1 to path2.

19

LNBLNK
INTEGER FUNCTION lnblnk(string)

CHARACTER(LEN=*), INTENT(IN) :: string
END FUNCTION lnblnk

Alias for the standard len trim function. Returns the index of the last non-blank character in string.

LSTAT
INTEGER FUNCTION LSTAT(file, sarray)

CHARACTER(LEN=*), INTENT(IN) :: file
INTEGER, INTENT(OUT) :: sarray(13)

END FUNCTION LSTAT
If file is a symbolic link it returns data on the link itself. See the FSTAT() function for further details.
Returns nonzero on error.

RAND
REAL FUNCTION rand(x)

INTEGER, OPTIONAL, INTENT(IN) :: x
END FUNCTION rand

Returns a uniform pseudo-random number such that 0 ≤ rand < 1. If x is 0, the next number in sequence
is returned. If x is 1, the generator is restarted by calling srand(0). If x has any other value, it is used as a
new seed with srand.

SECNDS
INTEGER FUNCTION secnds(t)

REAL, INTENT(IN) :: t
END FUNCTION secnds

Returns the local time in seconds since midnight minus the value t. This function is generic.

SIGNAL
FUNCTION signal(signal, handler)

INTEGER, INTENT(IN) :: signal
PROCEDURE, INTENT(IN) :: handler

END FUNCTION signal
Interface to the unix signal call. Return nonzero on error.

SIZEOF
INTEGER FUNCTION sizeof(object)
END FUNCTION sizeof

The argument object is the name of an expression or type. Returns the size of object in bytes.

STAT
INTEGER FUNCTION stat(file, sarray)

CHARACTER(LEN=*), INTENT(IN) :: file
INTEGER, INTENT(OUT) :: sarray(13), status

END FUNCTION stat
Obtains data about the given file and places it in the array sarray. See the fstat() function for details.
Returns nonzero on error.

SYSTEM
INTEGER FUNCTION system(cmd)

CHARACTER(LEN=*), INTENT(IN) :: cmd
END FUNCTION system

Invoke an external command in the cmd string. Returns the system exit code.

TIME
INTEGER FUNCTION time()
END FUNCTION time

Returns the current time encoded as an integer in the manner of the UNIX function time.

20

UNLINK
INTEGER FUNCTION unlink(file)

CHARACTER(LEN=*), INTENT(IN) :: file
END FUNCTION unlink

Unlink (delete) the file file. Returns nonzero on error.

%VAL()
When applied to a variable in a formal argument list, causes the variable to be passed by value. This
pseudo-function is not recommended, and is only implemented for compatibility. The F2003 VALUE attribute
is the standard mechanism for accomplishing this.

%REF()
When applied to a variable in a formal argument list, causes the variable to be passed by reference.

G95 Intrinsic Subroutine Extensions

ABORT
SUBROUTINE abort()
END SUBROUTINE abort

Causes the program to quit with a core dump by sending a SIGABORT to itself (unix).

CHDIR
SUBROUTINE chdir(dir)

CHARACTER(LEN=*), INTENT(IN) :: dir
END SUBROUTINE

Sets the current working directory to dir.

DTIME
SUBROUTINE dtime(tarray, result)

REAL, OPTIONAL, INTENT(OUT) :: tarray(2), result
END SUBROUTINE dtime

Sets tarray(1) to the number of elapsed seconds of user time in the current process since DTIME was last
invoked. Sets tarray(2) to the number of elapsed seconds of system time in the current process since DTIME
was last invoked. Sets result to the sum of the two times.

ETIME
SUBROUTINE etime(tarray, result)

REAL, OPTIONAL, INTENT(OUT) :: tarray(2), result
END SUBROUTINE etime

Sets tarray(1) to the number of elapsed seconds of user time in the current process. Sets tarray(2) to the
number of elapsed seconds of system time in the current process. Sets result to the sum of the two times.

EXIT
SUBROUTINE exit(code)

INTEGER, OPTIONAL, INTENT(IN) :: code
END SUBROUTINE exit

Exit a program with status code after closing open Fortran I/O units. This subroutine is generic.

FDATE
SUBROUTINE fdate(date)

CHARACTER(LEN=*), INTENT(OUT) :: date
END SUBROUTINE fdate

Sets date to the current date and time as: Day Mon dd hh:mm:ss yyyy.

21

FLUSH
SUBROUTINE flush(unit)

INTEGER, INTENT(IN) :: unit
END SUBROUTINE flush

Flushes the Fortran file unit currently open for output.

FSTAT
SUBROUTINE FSTAT(unit, sarray, status)

INTEGER, INTENT(IN) :: unit
INTEGER, INTENT(OUT) :: sarray(13), status

END SUBROUTINE fstat
Obtains data about the file open on Fortran I/O unit and places them in the array sarray(). Sets status
to nonzero on error. See the fstat function for information on how sarray is set.

GERROR
SUBROUTINE gerror(message)

CHARACTER(LEN=*), INTENT(OUT) :: message
END SUBROUTINE gerror

Returns the system error message corresponding to the last system error (C errno).

GETARG
SUBROUTINE getarg(pos, value)

INTEGER, INTENT(IN) :: pos
CHARACTER(LEN=*), INTENT(OUT) :: value

END SUBROUTINE
Sets value to the posth command-line argument.

GETENV
SUBROUTINE getenv(variable, value)

CHARACTER(LEN=*), INTENT(IN) :: variable
CHARACTER(LEN=*), INTENT(OUT) :: value

END SUBROUTINE getenv
Retrieves the environment variable variable, and sets value to its value.

GETLOG
SUBROUTINE getlog(name)

CHARACTER(LEN=*), INTENT(OUT) :: name
END SUBROUTINE getlog

Returns the login name for the process in name.

IDATE
SUBROUTINE idate(m, d, y)

INTEGER :: m, d, y
END SUBROUTINE idate

Sets m to the current month, d to the current day of the month and y to the current year. This subroutine
is not very portable across implementations. Use the standard DATE AND TIME subroutine for new code.

ITIME
SUBROUTINE itime(tarray)

INTEGER, INTENT(OUT) :: tarray(3)
END SUBROUTINE itime

Returns the current local time hour, minutes, and seconds in elements 1, 2, and 3 of tarray, respectively.

22

LSTAT
SUBROUTINE lstat(file,sarray,status)

CHARACTER(LEN=*), INTENT(IN) :: file
INTEGER, INTENT(OUT) :: sarray(13), status

END SUBROUTINE lstat
If file is a symbolic link it returns data on the link itself. See fstat() for further details.

LTIME
SUBROUTINE ltime(stime,tarray)

INTEGER :: stime
INTEGER, INTENT(OUT) :: tarray(9)

END SUBROUTINE ltime
Converts system time, stime, to local time, given in tarray, an integer array with 9 elements. The elements
of tarray are:

tarray(1) Seconds
tarray(2) Minutes
tarray(3) Hours past midnight
tarray(4) Day of month
tarray(5) Number of months since January
tarray(6) Years since 1900
tarray(7) Number of days since Sunday
tarray(8) Days since January 1
tarray(9) Daylight savings indicator: positive if daylight savings is in effect, zero if not, and negative

if the information is not available.

RENAME
SUBROUTINE rename(path1, path2, status)

CHARACTER(LEN=*), INTENT(IN) :: path1, path2
INTEGER, OPTIONAL, INTENT(OUT) :: status

END SUBROUTINE rename
Renames the file path1 to path2. If the status argument is supplied, it is set to nonzero on error.

SECOND
SUBROUTINE second(time)

REAL, INTENT(OUT) :: time
END SUBROUTINE second

Returns the process’s runtime time in seconds.

SIGNAL
SUBROUTINE signal(signal, handler, status)

INTEGER, INTENT(IN) :: signal
PROCEDURE, INTENT(IN) :: handler
INTEGER, INTENT(OUT) :: status

END SUBROUTINE signal
Interface to the unix signal system call. Sets status to nonzero on error.

SLEEP
SUBROUTINE sleep(seconds)

INTEGER, INTENT(IN) :: seconds
END SUBROUTINE sleep

Causes the process to pause for seconds seconds.

SRAND
SUBROUTINE srand(seed)

INTEGER, INTENT(IN) :: seed
END SUBROUTINE srand

Re-initializes the random number generator. See the srand() function for details.

23

STAT
SUBROUTINE stat(file, sarray, status)

CHARACTER(LEN=*), INTENT(IN) :: file
INTEGER, INTENT(OUT) :: sarray(13), status

END SUBROUTINE
Obtains data about the given file and places it in the array sarray. See fstat() for details. Sets status
to nonzero on error.

SYSTEM
SUBROUTINE system(cmd, result)

CHARACTER(LEN=*), INTENT(IN) :: cmd
INTEGER, OPTIONAL, INTENT(OUT) :: result

END SUBROUTINE system
Passes the command cmd to a shell. If result is supplied, it is set to the system exit code of cmd.

UNLINK
SUBROUTINE unlink(file, status)

CHARACTER(LEN=*), INTENT(IN) :: file
INTEGER, INTENT(OUT) :: status

END SUBROUTINE unlink
Unlink (delete) the file file. On error, status is set to nonzero.

24

