3D Mesocale Modeling of the Venus Atmosphere

Maxence Lefèvre, Sébastien Lebonnois and Aymeric Spiga

maxence.lefevre@Imd.jussieu.fr Laboratoire de Météorologie Dynamique, Paris, FRANCE

CPS, 29th March 2018

CPS, 29th March 2018

Introduction : Convective layer

VeRa radio occultation

Stronger convective activity at high latitude

Maxence Lefèvre (LMD)

3D Mesoscale Modeling of the Venus

∃ ► < ∃ ►</p> CPS, 29th March 2018 2 / 53

Introduction : Convective layer

Akatsuki radio occultation

40°s-40°N

Imamura et al., 2018 Stronger convective activity at night

Maxence Lefèvre (LMD)

3D Mesoscale Modeling of the Venus

CPS, 29th March 2018

Introduction : Convective layer

VeGa Balloon vertical wind measurement $\sim\pm$ 3 m/s at \pm 7°

Linkin et al., 1986

3D Mesoscale Modeling of the Venus

Introduction : Gravity waves

CPS, 29th March 2018

Introduction : Gravity waves

Observations at cloud top (\sim 70 km)

Picciali et al., 2014

Bertaux et al., 2016

Picciali et al., 2014

Convection/Topography \rightarrow Gravity waves \rightarrow maintaining super-rotation ?

Maxence Lefèvre (LMD)

3D Mesoscale Modeling of the Venus

CPS, 29th March 2018

6 / 53

$\label{eq:GCM} \mbox{GCM resolution} > \mbox{convective activity} \ / \ \mbox{gravity waves} \rightarrow \mbox{turbulent resolving} \\ \mbox{model}.$

We use WRF non-hydrostatic and compressible dynamical core :

	Large Eddy Simulation (LES)
horizontal resolution	10-1000s m
turbulence resolved	Yes
horizontal boundary	Periodical
Bottom boundary	Flat
Top boundary	Sponge layer

Physics configuration

Heating rates decomposed in 3 different contributions :

-2 radiative ones

- Dynamics: associated with global dynamics : Hadley cell

(Adiabatic warming/cooling)

	Off-line (Lefèvre et al., 2017)	On-line (to be submitted)
Solar	Interpolated : LMD Venus GCM	short waves radiation fluxes
	(Lebonnois et al., 2016)	from Haus et al (2016)
		Eymet et al (2009) NET matrix
IR	Interpolated	latitudinal varying cloud model
		(Haus et al 2013/2014)
Dynamics	Interpolated	Interpolated, zonally averaged
Resolution	200 m	400 m
horizontal domain	36x36 km	60×60 km
vertical domain	40 to 70 km	300 levels from surface to 100 km

No wind shear is imposed

Input from GMC Simuations (Garate-Lopez and Lebonnois, 2018)

Exemple of heating rate

Maxence Lefèvre (LMD)

CPS, 29th March 2018

Main convective layer

Maxence Lefèvre (LMD)

3D Mesoscale Modeling of the Venus

CPS, 29th March 2018

A B A A B A

< 17 ▶

10 / 53

Equator noon

On-line convection between 46 and 55 km : 4x the off-line mode.

Fine vertical resolution for radiative transfer needed

 Maxence Lefèvre (LMD)
 3D Mesoscale Modeling of the Venus
 CPS, 29th March 2018
 11 / 53

Equator noon: : Convection

Vertical wind between ± 2.5 m/s, consistent with observations Convective cell of 20 km of diameter.

CPS, 29th March 2018

Equator noon: : Gravity waves

Amplitude of GWs ± 0.5 K, smaller than the observations Circular wavefront, not consistent with observations.

Variability with local time

Convective layer slithly thicker at midnight, consistent with Imamura 2014. Low-static stability layer linked to the end of the mode 2p.

Cloud particle size distribution : The Equator

Maxence Lefèvre (LMD)

3D Mesoscale Modeling of the Venus

CPS, 29th March 2018

э 15 / 53

-

Variability with latitude

 75° thicker than the Equator and $55^\circ,$ consistent with observations But 55° and the Equator very similar.

Behaviour of the convective layer

Static stability

vertical wind

CPS, 29th March 2018

Observations

Magellan radio occultation

Hinson and Jenkins 1995

A B A A B A

< 🗇 🕨

Cloud top convective activity

Maxence Lefèvre (LMD)

3D Mesoscale Modeling of the Venus

CPS, 29th March 2018

3. 3

Observations

VMC observations

Titov et al., 2012 Subsollar convective activity at low latitude But no mixed layer observed > () () () () ()

Maxence Lefèvre (LMD)

3D Mesoscale Modeling of the Venus

CPS, 29th March 2018

Static stability

Potential temperature

Convection between 67 and 73km but stable atmosphere observed.

Maxence Lefèvre (LMD)

3D Mesoscale Modeling of the Venus

★ 3 > CPS, 29th March 2018

- (E

э

21 / 53

< 17 ▶

Equator noon

Vertical wind between ± 3 m/s Convective cell of diameter of 10 km

CPS, 29th March 2018

- K 🖻

Why?

Strong heating from unknow UV aborber \rightarrow destabilization.

Maxence Lefèvre (LMD)

3D Mesoscale Modeling of the Venus

CPS, 29th March 2018

< A

- ∢ ≣ →

3

Variability with local time

The Equator

Weaker convective activity at midnight Destabilization at midnight due to the dynamics

Maxence Lefèvre (LMD)

3D Mesoscale Modeling of the Venus

CPS, 29th March 2018

Variability with latitude

convective activity also present at 55° . in the GCM mid-latitude jets are too close to the pole.

Maxence Lefèvre (LMD)

3D Mesoscale Modeling of the Venus

CPS, 29th March 2018

Impact of the wind shear

Maxence Lefèvre (LMD)

3D Mesoscale Modeling of the Venus

CPS, 29th March 2018

▶ ≣ ৩৭৫ 2018 26/53

∃ →

Variability with latitude

Maxence Lefèvre (LMD)

3D Mesoscale Modeling of the Venus

 э

Impact on the GWs

Few impact on convection but strong on GWs

Stronger amplitude with the wind shear : obstacle effect

GWs wavelength

At 57 km

Linear wave front

THEACHEC ECTEVIC (END)	Maxence I	Lefèvre (LMD)
------------------------	-----------	-----------	-----	---

3D Mesoscale Modeling of the Venus

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

GWs wavelength

At cloud top

Wavelength up to 20 km. Very close to VMC observations.

3D Mesoscale Modeling of the Venus

CPS, 29th March 2018

- ∢ ≣ →

3

30 / 53

< 🗇 🕨

Conclusion LES

- Fine vertical resolution radiative transfer to resolve convective layer.

- Latitudinal variabilty of the convective layer.
 - Convection activity at cloud top.
 - With the wind shear : realistic GWs.

Improvement :

- New dynamical for the GCM.
- Dynamics heating interpolated from fine GCM grid.
 - Solar heating rate from tables.

<u>To come</u> : - PBL study.

JSPS project :

- Photochemistry (A. Stolzenbach and F. Lefèvre), already implemented in LES.
 - Microphysics (S. Guilbon and A.Määttänen).
 - To improve F.Lott parametrization of orographic (T. Navarro) and non-orographic (G.Gilli) GWs into the GCM.

(B)