dcpam5 支配方程式系とその離散化

地球流体電脳倶楽部

平成 23 年 2 月 21 日

目 次

第1章	この文書について	1
1.1	この文書について...........................	1
第2章	座標系・変換公式	2
2.1	はじめに..............................	2
2.2	座標系	2
2.3	水平格子点	2
2.4	鉛直レベル・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3
2.5	水平スペクトル	4
	2.5.1 水平スペクトルの基底の導入	4
	2.5.2 波数切断	5
	2.5.3 離散化したスペクトルの基底の直交性	6
	2.5.4 格子点値とスペクトルの係数との変換法	6
	2.5.5 内挿公式	7
	2.5.6 空間微分の評価	7
2.6	参考文献	8
第3章	力学過程	9
3.1	はじめに................................	9
3.2	数理表現.................................	9
	3.2.1 連続の式	9
	3.2.2 静水圧の式 1	.0
	3.2.3 運動方程式 1	.0
	3.2.3 運動方程式 1 3.2.4 熱力学の式 1	0.0
	3.2.3 運動方程式 1 3.2.4 熱力学の式 1 3.2.5 水蒸気の式 1	0 0 0
	3.2.3 運動方程式 1 3.2.4 熱力学の式 1 3.2.5 水蒸気の式 1 3.2.6 境界条件 1	0 .0 .0 .3
	3.2.3 運動方程式 1 3.2.4 熱力学の式 1 3.2.5 水蒸気の式 1 3.2.6 境界条件 1 3.2.7 水平拡散とスポンジ層 1	.0 .0 .0 .3 .3
	3.2.3 運動方程式 1 3.2.4 熱力学の式 1 3.2.5 水蒸気の式 1 3.2.6 境界条件 1 3.2.7 水平拡散とスポンジ層 1 3.2.8 水平拡散係数の値を決めるための判断材料 1	0 0 0 3 3
3.3	3.2.3 運動方程式 1 3.2.4 熱力学の式 1 3.2.5 水蒸気の式 1 3.2.6 境界条件 1 3.2.7 水平拡散とスポンジ層 1 3.2.8 水平拡散係数の値を決めるための判断材料 1 離散表現: 鉛直離散化 1	.0 .0 .3 .3 .4
3.3	3.2.3 運動方程式 1 3.2.4 熱力学の式 1 3.2.5 水蒸気の式 1 3.2.6 境界条件 1 3.2.7 水平拡散とスポンジ層 1 3.2.8 水平拡散係数の値を決めるための判断材料 1 第載表現: 鉛直離散化 1 3.3.1 連続の式、鉛直速度 1	0 0 .0 .3 .3 .4 .6
3.3	3.2.3 運動方程式 1 3.2.4 熱力学の式 1 3.2.5 水蒸気の式 1 3.2.6 境界条件 1 3.2.7 水平拡散とスポンジ層 1 3.2.8 水平拡散係数の値を決めるための判断材料 1 3.2.1 連続の式,鉛直速度 1 3.3.2 静水圧の式 1	$ \begin{array}{c} 0 \\ 0 \\ 3 \\ 3 \\ 4 \\ 6 \\ $

3.3.5 が蒸気の式 19 3.4 離散表現、水平離散化 16 3.4.1 連続の式 12 3.4.2 運動方程式 21 3.4.3 熱力学の式 21 3.5.1 力学過程の方程式系の時間差分式 22 3.5.1 力学過程の方程式系の時間差分式 22 3.6 参考文献 22 4.1 はじめに 22 4.2 離散表現 22 4.2.2 鉛直層中心と境界における高度 22 5.2 数理表現 30 5.2.2 数放射 30 5.2.3 大気放射 31 5.2.4 長波放射 35 5.3 離散表現 35 5.4 参考文社 35 5.5.1 散乱のない場合の長波放射 35<		3.3.4 熱力学の式 18
3.4<	2.4	
3.4.1 単振の式 19 3.4.2 運動方程式 20 3.4.3 熱力学の式 21 3.4.4 水蒸気の式 21 3.4.4 水蒸気の式 21 3.4.4 水蒸気の式 21 3.5 離散表現、時間離散化 22 3.5.1 力学過程の方程式系の時間差分式 22 3.5 第10章 第4章 物理過程で用いる予備変数 28 4.1 はじめに 22 4.2 離散表現 22 4.2.1 鉛直層中心と境界における高度 26 4.2.2 鉛直層中心と境界における高度 26 4.2.2 鉛直層中心と境界における高度 26 4.2.1 鉛直層中心と境界における高度 26 4.2.2 鉛直層中心と境界における高度 30 5.1 はじめに 30 5.2 投波放射 31 5.2.2 投波放射 31 5.2.3 大気上端での恒星の放射フラックス 32 5.3 離散表現 33 5.4 参考文献 35 5.5 数理表現 36 5.6.1 散乱のない場合の長波放射 36 5.6.1 最波放射 37 5.6.1 長波放射 37	3.4	
3.4.2 連動方権式 21 3.4.3 熱力学の式 21 3.4.4 水蒸気の式 21 3.5 離散表現:時間離散化 22 3.5.1 力学過程の方程式系の時間差分式 22 3.6 参考文献 27 第 4章 物理過程で用いる予備変数 28 4.1 はじめに 28 4.2 離散表現 28 4.1 はじめに 28 4.2 離散表現 28 4.2.1 鉛直層境界における温度 28 4.2.2 鉛直層中心と境界における高度 29 第 5章 放射 30 5.1 はじめに 30 5.2 数理表現 30 5.2.2 短波放射 31 5.2.3 大気上端での恒星の放射フラックス 32 5.3 離散表現 33 5.3.1 長波放射 33 5.3.2 短波放射 33 5.3.3 離散表現 36 5.4 参考文献 35 5.5 数理表現 36 5.6 離散表現 37 5.6 離散表現 37 5.6 離散表現 36 5.7 離散表現 36 5.8 次数 37 6.1 はじめに 39 6.2 湿潤対流調節 39 6.2 湿潤対流調節 <td></td> <td>3.4.1 連続の式</td>		3.4.1 連続の式
3.4.3 熟力学の式 21 3.4.4 水蒸気の式 21 3.5 離散表現:時間離散化 22 3.5.1 力学過程の方程式系の時間差分式 22 3.6 参考文献 27 第4章 物理過程で用いる予備変数 28 4.1 はじめに 22 4.2 離散表現 22 4.2 離散表現 22 4.2.1 鉛直層境界における温度 28 4.2.2 鉛直層中心と境界における高度 26 4.2.2 鉛直層中心と境界における高度 26 5.1 はじめに 30 5.1 はじめに 30 5.2 数理表現 30 5.2.1 長波放射 31 5.2.2 短波放射 31 5.2.3 大気上端での恒星の放射フラックス 32 5.3 離散表現 36 5.3.1 散え波放射 36 5.4 参考文献 35 5.5 数理表現 36 5.6.1 最波放射 37 5.6.1 最波放射 37 5.6.1 最波放射 37 5.6.1 <td< td=""><td></td><td>3.4.2 運動方程式</td></td<>		3.4.2 運動方程式
3.4.4 水蒸気の式 21 3.5 離散表現:時間離散化. 22 3.5.1 力学過程の方程式系の時間差分式 22 3.6 参考文献 27 第 4章 物理過程で用いる予備変数 28 4.1 はじめに 28 4.2 離散表現 28 4.1 はじめに 28 4.2 離散表現 28 4.2.1 鉛直層境界における温度 28 4.2.2 鉛直層中心と境界における高度 26 第 5章 放射 30 5.1 はじめに 30 5.2.1 長波放射 31 5.2.2 短波放射 33 5.2.3 大気上端での恒星の放射フラックス 32 5.3 離散表現 35 5.3.1 長波放射 35 5.5 数理表現 36 5.5.1 散乱のない場合の長波放射 36 5.6.1 長波放射 37 5.6.1 長波放射		3.4.3 熱力学の式 21
3.5 離散表現:時間離散化 22 3.5.1 力学過程の方程式系の時間差分式 22 3.6 参考文献 27 第4章 物理過程で用いる予備変数 28 4.1 はじめに 28 4.2 離散表現 28 4.2.1 鉛直層境界における温度 28 4.2.2 鉛直層中心と境界における高度 26 4.2.2 鉛直層中心と境界における高度 26 第5章 放射 30 5.1 はじめに 30 5.2 数理表現 30 5.2.1 長波放射 31 5.2.2 短波放射 31 5.2.3 大気上端での恒星の放射フラックス 32 5.3 離散表現 33 5.3.1 長波放射 33 5.3.2 短波放射 33 5.3.1 長波放射 32 5.3 離散表現 33 5.4 参考文献 35 5.5 数理表現 36 5.6.1 長波放射 37 5.6 離散表現 37 5.6 離散表現 37 5.6.1 長波放射 <td></td> <td>3.4.4 水蒸気の式 21</td>		3.4.4 水蒸気の式 21
3.5.1 力学過程の方程式系の時間差分式 23 3.6 参考文献 27 第4章 物理過程で用いる予備変数 28 4.1 はじめに 28 4.2 離散表現 26 4.2 離散表現 26 4.2.1 鉛直層境界における温度 26 4.2.2 鉛直層中心と境界における高度 26 第5章 放射 30 5.1 はじめに 30 5.2 数理表現 30 5.2 数理表現 30 5.2.1 長波放射 31 5.2.2 短波放射 31 5.2.3 大気上端での恒星の放射フラックス 32 5.3 離散表現 33 5.3.1 長波放射 35 5.3 数観表現 36 5.4 参考文献 36 5.5.1 軟乱のない場合の長波放射 37 5.6.1 長波放射 37 5.6.1 長波放射 37 5.6.1 長波放射 37 6.2 湿潤対流調節 32 6.3 参考文献 42 第7章 非対流程凝結 (大規模凝結)<	3.5	離散表現:時間離散化22
3.6 参考文献 27 第4章 物理過程で用いる予備変数 28 4.1 はじめに 28 4.2 離散表現 28 4.2 離散表現 28 4.2.1 鉛直層境界における温度 28 4.2.2 鉛直層境界における温度 26 4.2.2 鉛直層中心と境界における高度 26 第5章 放射 30 5.1 はじめに 30 5.2 数理表現 30 5.2 数理表現 30 5.2 数理表現 30 5.2.2 短波放射 31 5.2.3 大気上端での恒星の放射フラックス 32 5.3 離散表現 33 5.3.1 長波放射 35 5.3.2 短波放射 35 5.3 離散表現 36 5.4 参考文献 37 5.5.1 散乱のない場合の長波放射 37 5.6.1 長波放射 37 5.6.1 長波放射 37 5.6.1 長波放射 37 5.6.1 長波放射 36 6.2 湿潤対流調節 <t< td=""><td></td><td>3.5.1 力学過程の方程式系の時間差分式</td></t<>		3.5.1 力学過程の方程式系の時間差分式
第4章 物理過程で用いる予備変数 28 4.1 はじめに 26 4.2 離散表現 26 4.2.1 鉛直層境界における温度 26 4.2.2 鉛直層中心と境界における高度 26 第5章 放射 30 5.1 はじめに 30 5.2 数理表現 30 5.1 はじめに 30 5.2 数理表現 30 5.2.1 長波放射 31 5.2.2 短波放射 31 5.2.3 大気上端での恒星の放射フラックス 32 5.3 離散表現 33 5.3.1 長波放射 33 5.3.2 短波放射 33 5.3.3 上端衣明 36 5.4 参考文献 36 5.5 数理表現 36 5.6 数型表現 37 5.6.1 表記のない場合の長波放射 36 5.6.1 長波放射 37 5.6.1 長波放射 36 6.2 湿潤対流調節 36 6.3 参考文献 36 6.3 参考文献 42	3.6	参考文献
4.1 はじめに 28 4.2 離散表現 28 4.2.1 鉛直層境界における温度 28 4.2.2 鉛直層中心と境界における高度 29 第5章 放射 30 5.1 はじめに 30 5.2 数理表現 30 5.2.1 長波放射 31 5.2.2 短波放射 31 5.2.3 大気上端での恒星の放射フラックス 32 5.3 離散表現 33 5.3.1 長波放射 33 5.3.2 短波放射 33 5.3.3 主要認知知問 33 5.3.4 参考文献 33 5.5 数理表現 36 5.5 数理表現 37 5.6.1 最波放射 37 5.6.1 長波放射 36 6.2 湿潤対流調節 38 6.3 参考文献 38	第4章	物理過程で用いる予備変数 28
4.2 離散表現 28 4.2.1 鉛直層境界における温度 28 4.2.2 鉛直層中心と境界における高度 29 第5章 放射 30 5.1 はじめに 30 5.2 数理表現 30 5.2.1 長波放射 30 5.2.2 短波放射 31 5.2.3 大気上端での恒星の放射フラックス 32 5.3 離散表現 33 5.3.1 長波放射 33 5.3.2 短波放射 33 5.3.3 たきな成射 33 5.3.4 参考文献 35 5.5 数理表現 35 5.5 数理表現 36 5.5.1 散乱のない場合の長波放射 36 5.6.1 長波放射 37 5.6.1 最波放射 37 6.3 参考文献 38 6.3 参考文献 42 </td <td>4.1</td> <td>はじめに</td>	4.1	はじめに
4.2.1 鉛直層境界における温度 28 4.2.2 鉛直層中心と境界における高度 29 第5章 放射 30 5.1 はじめに 30 5.2 数理表現 30 5.2.1 長波放射 30 5.2.2 短波放射 31 5.2.3 大気上端での恒星の放射フラックス 32 5.3 離散表現 33 5.3.1 長波放射 33 5.3.2 短波放射 33 5.3.3 離散表現 33 5.3.4 参考文献 32 5.5 数理表現 32 5.6 離散表現 32 5.6.1 最波放射 32 5.6.1 長波放射 32 5.6.1 最波放射 32 6.2 湿潤対流調節 32 6.3 参考文献 32 7.1 離散表現 43	4.2	離散表現
4.2.2 鉛直層中心と境界における高度 29 第5章 放射 30 5.1 はじめに 30 5.2 数理表現 30 5.2 数理表現 30 5.2.1 長波放射 30 5.2.2 短波放射 31 5.2.3 大気上端での恒星の放射フラックス 32 5.3 離散表現 33 5.3.1 長波放射 33 5.3.2 短波放射 33 5.3.4 参考文献 36 5.5 数理表現 32 5.5 数理表現 32 5.5.1 散乱のない場合の長波放射 36 5.6.1 長波放射 37 5.6.1 長波放射 39 6.3 参考文献 39 6.3 参考文献 42 第7章 非対流性凝結 (大規模凝結) 43 7.1 離散表現 43		4.2.1 鉛直層境界における温度 28
第5章 放射 30 5.1 はじめに 30 5.2 数理表現 30 5.2 数理表現 30 5.2 数理表現 30 5.2 数理表現 30 5.2.1 長波放射 31 5.2.2 短波放射 31 5.2.3 大気上端での恒星の放射フラックス 32 5.3 離散表現 33 5.3.1 長波放射 33 5.3.1 長波放射 33 5.3.2 短波放射 33 5.3.2 短波放射 35 5.4 参考文献 36 5.5.1 散乱のない場合の長波放射 36 5.5.1 散乱のない場合の長波放射 36 5.6.1 長波放射 37 5.6.1 長波放射 37 5.6.1 長波放射 37 6.1 はじめに 32 6.2 湿潤対流調節 32 6.3 参考文献 42 第7章 非対流性凝結 (大規模凝結) 43 7.1 離散表現 43		4.2.2 鉛直層中心と境界における高度
5.1 はじめに	第5章	放射 30
5.2 数理表現 30 5.2.1 長波放射 31 5.2.2 短波放射 31 5.2.3 大気上端での恒星の放射フラックス 32 5.3 離散表現 33 5.3.1 長波放射 33 5.3.1 長波放射 33 5.3.1 長波放射 33 5.3.2 短波放射 33 5.3.4 参考文献 35 5.5 数理表現 36 5.6 離散表現 36 5.6.1 散乱のない場合の長波放射 36 5.6.1 長波放射 37 5.6.1 長波放射 37 5.6.1 長波放射 37 5.6.1 長波放射 37 6.1 はじめに 36 6.2 湿潤対流調節 39 6.3 参考文献 32 第7章 非対流性凝結 (大規模凝結) 43 7.1 離散表現 43	5.1	はじめに
 5.2.1 長波放射	5.2	数理表現
5.2.2 短波放射 31 5.2.3 大気上端での恒星の放射フラックス 32 5.3 離散表現 33 5.3.1 長波放射 33 5.3.2 短波放射 35 5.4 参考文献 36 5.5 数理表現 36 5.6.1 散乱のない場合の長波放射 36 5.6.1 長波放射 37 5.6.1 長波放射 37 5.6.1 長波放射 37 6.1 はじめに 36 6.2 湿潤対流調節 39 6.3 参考文献 39 6.3 参考文献 42 第7章 非対流性凝結 (大規模凝結) 43 7.1 離散表現 43		5.2.1 長波放射
5.2.3 大気上端での恒星の放射フラックス 32 5.3 離散表現 33 5.3.1 長波放射 35 5.3.2 短波放射 35 5.4 参考文献 35 5.5 数理表現 36 5.6 離散表現 36 5.6 離散表現 37 5.6.1 長波放射 37 6.2 湿潤対流調節 38 6.3 参考文献 39 6.3 参考文献 42 第 7章 非対流性凝結 (大規模凝結) 43 7.1 離散表現 43		5.2.2 短波放射
5.3<		5.2.3 大気上端での恒星の放射フラックス
5.3.1 長波放射 33 5.3.2 短波放射 35 5.4 参考文献 35 5.5 数理表現 36 5.5 数理表現 36 5.5 数理表現 36 5.5 数理表現 36 5.5.1 散乱のない場合の長波放射 36 5.6 離散表現 37 5.6.1 長波放射 37 5.6.1 長波放射 37 6.1 はじめに 39 6.2 湿潤対流調節 39 6.3 参考文献 39 6.3 参考文献 42 第7章 非対流性凝結 (大規模凝結) 43 7.1 離散表現 43	5.3	離散表現
5.3.2 短波放射. 35 5.4 参考文献. 36 5.5 数理表現. 36 5.5.1 散乱のない場合の長波放射. 36 5.6 離散表現. 37 5.6.1 長波放射. 37 5.6.1 長波放射. 37 5.6.1 長波放射. 37 6.1 はじめに. 39 6.2 湿潤対流調節. 39 6.3 参考文献. 39 6.3 参考文献. 42 第7章 非対流性凝結 (大規模凝結) 43 7.1 離散表現. 43		5.3.1 長波放射
5.4 参考文献 35 5.5 数理表現 36 5.5.1 散乱のない場合の長波放射 36 5.6 離散表現 37 5.6.1 長波放射 37 6.2 湿潤対流調節 39 6.2 湿潤対流調節 39 6.3 参考文献 42 第7章 非対流性凝結 (大規模凝結) 43 7.1 離散表現 43		5.3.2 短波放射
5.5 数理表現 36 5.5.1 散乱のない場合の長波放射 36 5.6 離散表現 37 5.6.1 長波放射 37 5.6.1 長波放射 37 5.6.1 長波放射 37 6.2 湿潤対流調節 39 6.3 参考文献 39 6.3 参考文献 42 第7章 非対流性凝結 (大規模凝結) 43 7.1 離散表現 43	5.4	
5.5.1 散乱のない場合の長波放射 36 5.6 離散表現 37 5.6.1 長波放射 37 5.6.1 長波放射 37 6.2 湿潤対流調節 39 6.3 参考文献 39 7.1 離散表現 43	5.5	数理表現
5.6 離散表現		5.5.1 散乱のない場合の長波放射
5.6.1 長波放射	5.6	離散表現
第6章 積雲パラメタリゼーション 39 6.1 はじめに		5.6.1 長波放射
6.1 はじめに	第6章	積雲パラメタリゼーション 39
6.2 湿潤対流調節 39 6.2.1 離散表現 39 6.3 参考文献 42 第7章 非対流性凝結 (大規模凝結) 43 7.1 離散表現 43	6.1	はじめに
6.2.1 離散表現 39 6.3 参考文献 42 第7章 非対流性凝結 (大規模凝結) 43 7.1 離散表現 43	62	
6.3 参考文献 42 第7章 非対流性凝結 (大規模凝結) 43 7.1 離散表現 43	0.2	6.2.1 離散表現 30
第7章 非対流性凝結 (大規模凝結) 43 7.1 離散表現	6.3	参考文献
7.1 離散表現	第7章	非対流性凝結 (大規模凝結) 43
	7.1	離散表現

iv dcpam5 支配方程式系とその離散化

7.2	参考文献4	4
第8章	乱流過程 4	5
8.1	数理表現	5
	8.1.1 鉛直拡散係数	6
	8.1.2 バルク係数 4	8
8.2	離散表現	9
	8.2.1 鉛直拡散係数	2
	8.2.2 バルク係数	2
	8.2.3 運動量拡散の差分方程式の整理	3
	8.2.4 熱拡散の差分方程式の整理	4
	8.2.5 水蒸気 (物質) 拡散の差分方程式の整理	6
8.3	参考文献	8
笠ぃ辛	或見まあ、地工の熱収すのない。	^
 	総生衣山・地下の熱似文 0 物理主項 。	0
9.1		0
	9.1.1 惑生安山 I 僧てナル 0	0
	9.1.2 工壌熟扱取セナル	1
0.0	9.1.3 冯水 1 層熱似文七ナル	1
9.2		1
		2
	9.2.2 地表面における熱収支と地下における熱伝導万程式 6	3
		6
	9.2.4 融雪による熱収支の修止 6	7
第10章	き バケツモデル 7	3
10.	1 数理表現	3
10.5	2 離散表現	3
10.	3 参考文献	3
笛 11 著	き、熱収支を統合した通立支程式の構成 7	1
77 II		-± '/
11.	1 神政役境・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4 1
		4 15
		C C
		0
付録』	A 惑星大気の物理定数 7	8
A.1	地球大気の物理定数	8
/ ^¬ -		~
付録Ⅰ	3 坐標糸・	9
B.1	坏面調相函数 \dots	9

basic `equations.tex

		B.1.1	定義と性質	80
		B.1.2	球面調和函数の空間微分・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	84
		B.1.3	コメント — 全波数について	84
		B.1.4	グラフ	86
	B.2	微分公	式, GCM の変数の微分関係式	87
		B.2.1	スカラー量の微分	87
		B.2.2	ベクトル量の微分	87
		B.2.3	発散	88
		B.2.4	渦度	88
		B.2.5	速度ポテンシャル、流線関数と (u,v)	88
	B.3	Legend	Ire 函数 P_n の性質	88
		B.3.1	多項式とLegendre 函数の積の積分	89
		B.3.2	Legendre 函数の零点	89
	B.4	積分評	価	90
		B.4.1	Gauss の台形公式	90
		B.4.2	Gauss-Legendreの公式	91
	B.5	球面調	和函数の離散的直交関係	95
	B.6	スペク	トルの係数と格子点値とのやり取り	97
		B.6.1	スペクトルの係数と格子点値との値のやり取り	98
		B.6.2	スペクトルの係数と格子点値との値のやり取り~東西微分編	98
		B.6.3	スペクトルの係数と格子点値との値のやり取り~南北微分編	99
		B.6.4	χ,ψ のスペクトルの係数から速度の格子点値への変換	101
	B.7	スペク	トルの係数同士の関係	102
	B.8	波数切	断	103
		B.8.1	波数切断の仕方	103
		B.8.2	切断波数の決め方・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	105
	B.9	スペク	トルモデルと差分モデル	110
	B.10	参考文	献	111
付	録 C	使用	トの注意とライヤンス規定	112

第1章 この文書について

1.1 この文書について

この文書は、地球流体電脳倶楽部で開発中の大気大循環モデル、dcpam、のバージョン5である dcpam5の支配方程式系およびその離散化手法を解説したものである.

現状では、本文書の内容とソースコードとで一致しない箇所もあることに注意されたい.

第2章 座標系・変換公式

2.1 はじめに

ここでは、座標系および水平格子点、鉛直レベルの取り方を記す. さらに、力学過程 の時間積分において使用する水平スペクトルを定義し、格子点値とスペクトルの係 数との変換則を記す.

2.2 座標系

座標系は、水平方向には緯度 φ 、経度 λ を、鉛直方向には $\sigma \equiv \frac{p}{p_s}$ をとる. ここで pは気圧、 p_s は地表面気圧である.

座標の取り方に関する詳細は別紙『支配方程式系の導出に関する参考資料¹』の『座 標系の取り方』を参照せよ.

2.3 水平格子点

水平方向の格子点の位置は, Gauss 緯度 (格子点数 J 個²), 等間隔の経度 (同 I 個) である.

• Gauss 緯度

¹http://www.gfd-dennou.org/library/dcpam/dcpam5/dcpam5_current/doc/derivation/htm/derivation.htm ²以下, *J* は偶数とする. dcpam5 では、(Gauss 緯度としてとる場合には) *J* は偶数でなければな らない.

Gauss 緯度を J次の Legendre 函数 $P_J(\sin \varphi)$ の零点 $\varphi_j(j = 1, 2, 3, \dots, J)$ と して定義する. 順番としては, $\frac{\pi}{2} > \varphi_1 > \varphi_2 > \dots > \varphi_J > -\frac{\pi}{2}$ とする³. なお 以後, $\sin \varphi = \mu$ と書くことがある.

経度方向の格子点

経度方向の格子点の位置を

$$\lambda_i = \frac{2\pi(i-1)}{I} \quad (i = 1, 2, \cdots, I)$$
(2.1)

ととる.

2.4 鉛直レベル

Arakawa and Suarez (1983) のスキームを用いる. とり方は以下のとおりである⁴. 下の層から上へと層の番号をつける. 整数レベルと半整数レベルを定義する⁵. 半 整数レベルでの σ の値 $\sigma_{k-1/2}$ ($k = 1, 2, \dots, K$) を定義する. ここで, レベル $\frac{1}{2}$ は下端 ($\sigma = 1$), レベル $K + \frac{1}{2}$ は上端 ($\sigma = 0$) とする. 整数レベルの σ の値 σ_k ($k = 1, 2, \dots, K$) は次の式から求める.

$$\sigma_k = \left\{ \frac{1}{1+\kappa} \left(\frac{\sigma_{k-1/2}^{\kappa+1} - \sigma_{k+1/2}^{\kappa+1}}{\sigma_{k-1/2} - \sigma_{k+1/2}} \right) \right\}^{1/\kappa}.$$
(2.2)

 ${}^{3}J$ 次の Legendre 函数 $P_{J}(\mu)$ は

$$\left[\frac{d}{d\mu}\left\{(1-\mu^2)\frac{d}{d\mu}\right\} + J(J+1)\right]P_J(\mu) = 0$$

を満たす J 次多項式であり, $P_J(\mu)$ の零点は全て $-1 < \mu < 1$ にある. なお, Gauss 緯度は近似的には $\sin^{-1}\left(\cos \frac{j-1/2}{J}\pi\right)$ で与えられる.

⁴このスキームは次のような特徴をもつ.(2005/04/04 石渡: 始めの 4 つは不正確な表現かも)

- 全領域積分した質量を保存
- 全領域積分したエネルギーを保存
- 全領域積分の角運動量を保存
- 全質量積分した温位を保存
- 静水圧の式が local にきまる. (下層の高度が上層の温度に依存しない)
- 水平方向に一定の、ある特定の温度分布について、静水圧の式が正確になり、気圧傾度力が0 になる。
- 等温位大気はいつまでも等温位に留まる

⁵物理量により、整数レベルで定義されるものと、半整数レベルで定義されるものがある.

ここで $\kappa = \frac{R}{C_p}$, *R* は乾燥空気の気体定数, *C_p* は乾燥空気の定圧比熱である⁶. また, レベル加重 $\Delta \sigma$ は以下のように定義される.

$$\Delta \sigma_k \equiv \sigma_{k-1/2} - \sigma_{k+1/2}, \qquad (1 < k < K)$$

$$\Delta \sigma_{1/2} \equiv \sigma_{1/2} - \sigma_1 = 1 - \sigma_1, \qquad (2.3)$$

$$\Delta \sigma_{K+1/2} \equiv \sigma_K - \sigma_{K+1/2} = \sigma_K.$$

2.5 水平スペクトル

ここでは、力学過程の時間積分での計算において用いるスペクトルを導入し、格子 点での値とスペクトルの係数とのやり取りの公式を示す.

2.5.1 水平スペクトルの基底の導入

格子点上の点で定義された物理量は、格子点上でのみ値を持つ(以下このことを、 「離散化した」と呼ぶ)球面調和函数の和の形で表現される.また、各格子点におけ る物理量の水平微分を評価するために、(λ, φ)面で定義された(以下、「連続系の」 と呼ぶ)球面調和函数系で内挿して得られる関数を用いる.ここではその球面調和 函数を導入する.なお、簡単のために、連続系の球面調和函数のみを陽に記す.離 散系の球面調和函数は連続系の球面調和函数に格子点の座標を代入したものから 構成される.

⁶いずれも定数としている.

 (λ, φ) 面において,球面調和函数 $Y_n^m(\lambda, \varphi)$ は次のように定義される.

$$Y_n^m(\lambda,\varphi) \equiv P_n^m(\sin\varphi) \exp(im\lambda), \qquad (2.4)$$

ただし, m, n は $0 \le |m| \le n$ を満たす整数であり, $P_n^m(\sin \varphi)$ は 2 で規格化された Legendre 函数・陪函数

$$P_n^m(\mu) \equiv \sqrt{\frac{(2n+1)(n-|m|)!}{(n+|m|)!}} \frac{(1-\mu^2)^{\frac{|m|}{2}}}{2^n n!} \frac{d^{n+|m|}}{d\mu^{n+|m|}} (\mu^2 - 1)^n, \qquad (2.5)$$

$$\int_{-1}^{1} P_{n}^{m}(\mu) P_{n'}^{m}(\mu) d\mu = 2\delta_{nn'}$$
(2.6)

である. なお, P_n^0 を P_n とも書く. また $\sin \varphi = \mu$ であることを再掲しておく.

2.5.2 波数切断

波数切断は三角形切断 (T) または平行四辺形切断 (R) とする. M, N は三角形切断, 平行四辺形切断のときについてそれぞれ以下のとおりである. ただし, 切断波数を N_{tr} とする.

- 三角形切断の場合
 $M = N_{tr}, N = N_{tr}, I \ge 3N_{tr} + 1, かつ J \ge \frac{3N_{tr} + 1}{2}.$ 自由度は, $(N_{tr} + 1)^2$ である.
- ・ 平行四辺形切断の場合
 M = N_{tr}, N(m) = N_{tr} + |m|, I ≥ 3N_{tr} + 1, かつ J ≥ 3N_{tr} + 1.

 自由度は, (2N_{tr} + 1)(N_{tr} + 1) である.

よく用いられる値の例としては、T42 の場合 I = 128, J = 64, R21 の場合 I = 64, J = 64 がある.

球面調和函数と波数切断に関する詳細は、第 B.1 節および第 B.8 節を参照せよ.

6

2.5.3 離散化したスペクトルの基底の直交性

離散化した Legendre 函数と三角関数は次の直交条件を満たす⁷.

$$\sum_{j=1}^{J} P_n^m(\mu_j) P_{n'}^m(\mu_j) w_j = \delta_{nn'}, \qquad (2.7)$$

$$\sum_{i=1}^{I} \exp(im\lambda_i) \exp(-im'\lambda_i) = I\delta_{mm'}.$$
(2.8)

ここで w_j は Gauss 荷重で, $w_j \equiv \frac{(2J-1)(1-\sin^2\varphi_j)}{\{JP_{J-1}(\sin\varphi_j)\}^2}$ である.

2.5.4 格子点値とスペクトルの係数との変換法

物理量 A の格子点 (λ_i, φ_j) (ただし $i = 1, 2, \dots, I$. $j = 1, 2, \dots, J$) での値 $A_{ij} = A(\lambda_i, \varphi_j)$ とスペクトル空間での Y_n^m (ただし $m = -M, \dots, M$. $n = |m|, \dots, N(m)$)の係数 \tilde{A}_n^m とは次の変換則に従う⁸.

$$A_{ij} \equiv \sum_{m=-M}^{M} \sum_{n=|m|}^{N} \tilde{A}_{n}^{m} Y_{n}^{m}(\lambda_{i}, \varphi_{j}), \qquad (2.9)$$

$$\tilde{A}_{n}^{m} = \frac{1}{I} \sum_{i=1}^{I} \sum_{j=1}^{J} A_{ij} Y_{n}^{m*}(\lambda_{i}, \varphi_{j}) w_{j}.$$
(2.10)

A が実数であることを用いると、 $\left\{\tilde{A}_n^m \exp(im\lambda)\right\}^* = \tilde{A}_n^{-m} \exp(-im\lambda)$ なので、 m については負でない整数の範囲で和をとることができる⁹. ここで、"*" は複素共役

⁷詳しくは第 B.5 節を参照せよ。

⁸正変換,逆変換時の係数は整合的に与えてさえいれば問題がない.

⁹さらに、実際の計算手続きとしては、 $P_n^m(\sin \varphi)$ が、n-mが偶数 (even)の時 $\varphi = 0$ について 対称、n-mが奇数 (odd)の時 $\varphi = 0$ について反対称であることを考慮して演算回数を減らすこ とができる.すなわち、 A_{ij} の計算では北半球のみについて南北対称成分 A_{ij}^{even} と反対称成分 A_{ij}^{odd} についてそれぞれ計算し、南半球については $Ai, J-j = A_{ij}^{even} - A_{ij}^{odd}$ とすればよい.また、 A_n^m の計算においては、その対称性、反対称性に基づいて $A_{i,j} + A_{i,J-j}$ または $A_{i,j} - A_{i,J-j}$ の一方をjについて 1 から J/2まで加えればよい.

を表す. ただし、A^m の定義を以下のように修正していることに注意せよ.

$$A_{ij} = \sum_{m=0}^{M} \sum_{n=m}^{N} \Re \tilde{A}_{n}^{m} Y_{n}^{m}(\lambda_{i}, \varphi_{j}), \qquad (2.11)$$

$$\tilde{A}_{n}^{m} = \begin{cases} \frac{1}{I} \sum_{i=1}^{I} \sum_{j=1}^{J} A_{ij} Y_{n}^{m*}(\lambda_{i}, \varphi_{j}) w_{j}, & m = 0, \quad m \le n \le N, \\ \frac{2}{I} \sum_{i=1}^{I} \sum_{j=1}^{J} A_{ij} Y_{n}^{m*}(\lambda_{i}, \varphi_{j}) w_{j}, & 1 \le m \le M, \quad m \le n \le N. \end{cases}$$

2.5.5 内挿公式

 (λ, φ) 空間で定義される物理量 $A(\lambda, \varphi)$ を格子点値 A_{ij} をもとに内挿する場合に は、変換公式を用いて A_{ij} から \tilde{A}_n^m を求めた上で、

$$A(\lambda,\varphi) \equiv \sum_{m=-M}^{M} \sum_{n=|m|}^{N} \tilde{A}_{n}^{m} Y_{n}^{m}(\lambda,\varphi)$$
(2.13)

として得る.

2.5.6 空間微分の評価

各格子点における空間微分値の評価は、内挿公式を用いて得た連続関数の空間微分の格子点値で評価する.

 λ 微分

$$\left(\frac{\partial f}{\partial \lambda}\right)_{ij} \equiv \sum_{m=-M}^{M} \sum_{n=|m|}^{N} im \tilde{f}_{n}^{m} Y_{n}^{m}(\lambda_{i},\varphi_{j}), \qquad (2.14)$$

$$\left(\frac{\partial f}{\partial \lambda}\right)_{n}^{m} = \frac{1}{I} \sum_{i=1}^{I} \sum_{j=1}^{J} im f_{ij} Y_{n}^{m*}(\lambda_{i}, \varphi_{j}) w_{j}.$$
(2.15)

● µ 微分

$$\left(\frac{\partial f}{\partial \mu}\right)_{ij} \equiv \sum_{m=-M}^{M} \sum_{n=|m|}^{N} \tilde{f}_{n}^{m} \left.\frac{dP_{n}^{m}}{d\mu}\right|_{j} \exp(im\lambda_{i}),$$
(2.16)

$$\left(\widetilde{\frac{\partial f}{\partial \mu}}\right)_{n}^{m} = -\frac{1}{I} \sum_{i=1}^{I} \sum_{j=1}^{J} f_{ij} \left. \frac{dP_{n}^{m}}{d\mu} \right|_{j} \exp(-im\lambda_{i})w_{j}.$$
 (2.17)

2.6 参考文献

- Arakawa, A., Suarez, M. J., 1983: Vertical differencing of the primitive equations in sigma coordinates. Mon. Wea. Rev., 111, 34–35.
- 気象庁予報部, 1982:スペクトル法による数値予報(その原理と実際).気象庁, 111pp.
- Haltiner, G.J., Williams, R.T., 1980: Numerical Prediction and Dynamic Meteorology (2nd ed.). John Wiley & Sons, 477pp.
- **森口, 宇田川, 一松編**, 1956 : 岩波数学公式 I . 岩波書店, 318pp.
- 森口, 宇田川, 一松編, 1960: 岩波数学公式 III. 岩波書店, 310pp.
- 一松 信, 1982:数值解析. 朝倉書店, 163pp.
- 森 正武, 1984:数值解析法. 朝倉書店, 202pp.
- 寺沢寛一,1983:自然科学者のための数学概論(増訂版).岩波書店,711pp.

第3章 力学過程

3.1 はじめに

この章では力学過程の支配方程式を記し、その支配方程式の離散化を行う.

ここで述べる力学過程とは、流体の支配方程式における外力項を除いた部分を指す. 外力項である放射や鉛直乱流拡散や雲などに関する過程については別紙を参照の こと.

離散化については、空間に関する離散化である鉛直離散化と、水平離散化の方法な らびに時間に関する離散化を行う.

3.2 数理表現

ここでは力学過程の支配方程式系の数理表現を示す.この方程式系の詳細に関しては、Haltiner and Williams (1980) もしくは別紙『支配方程式系の導出に関する 参考資料¹』の『力学過程の支配方程式系の導出』を参照せよ.

3.2.1 連続の式

$$\frac{\partial \pi}{\partial t} + \boldsymbol{v}_H \cdot \nabla_{\sigma} \pi = -D - \frac{\partial \dot{\sigma}}{\partial \sigma}.$$
(3.1)

 $^{^{1}} http://www.gfd-dennou.org/library/dcpam/dcpam5/dcpam5_current/doc/derivation/htm/derivation.htm/derivati$

3.2.2 静水圧の式

$$\frac{\partial \Phi}{\partial \sigma} = -\frac{RT_v}{\sigma}.\tag{3.2}$$

3.2.3 運動方程式

$$\frac{\partial \zeta}{\partial t} = \frac{1}{a} \left(\frac{1}{1 - \mu^2} \frac{\partial V_A}{\partial \lambda} - \frac{\partial U_A}{\partial \mu} \right) + \mathcal{D}(\zeta), \qquad (3.3)$$

$$\frac{\partial D}{\partial t} = \frac{1}{a} \left(\frac{1}{1 - \mu^2} \frac{\partial U_A}{\partial \lambda} + \frac{\partial V_A}{\partial \mu} \right) - \nabla^2_{\sigma} (\Phi + R\overline{T}\pi + KE) + \mathcal{D}(D).$$
(3.4)

3.2.4 熱力学の式

$$\frac{\partial T}{\partial t} = -\frac{1}{a} \left(\frac{1}{1 - \mu^2} \frac{\partial UT'}{\partial \lambda} + \frac{\partial VT'}{\partial \mu} \right) + T'D
- \dot{\sigma} \frac{\partial T}{\partial \sigma} + \kappa T_v \left(\frac{\partial \pi}{\partial t} + \boldsymbol{v}_H \cdot \nabla_\sigma \pi + \frac{\dot{\sigma}}{\sigma} \right) + \frac{Q}{C_p} + \mathcal{D}(T) + \mathcal{D}'(\boldsymbol{v}).$$
(3.5)

3.2.5 水蒸気の式

$$\frac{\partial q}{\partial t} = -\frac{1}{a} \left(\frac{1}{1 - \mu^2} \frac{\partial Uq}{\partial \lambda} + \frac{\partial Vq}{\partial \mu} \right) + qD - \dot{\sigma} \frac{\partial q}{\partial \sigma} + S_q + \mathcal{D}(q).$$
(3.6)

ここで,独立変数は以下の通りである.

$$\varphi: \quad \mathbf{\dot{a}}\mathbf{\underline{c}} \ [\text{deg.}], \tag{3.7}$$

$$\lambda: \quad \mathbf{\mathcal{E}}\mathbf{\mathcal{E}} \ [\text{deg.}], \tag{3.8}$$

$$\sigma \equiv p/p_s,\tag{3.9}$$

$$t:$$
 時間 [s]. (3.10)

ここで, p は気圧, p_s は地表面気圧である. また $\mu \equiv \sin \varphi$ である.

モデルで時間発展を計算することとなる予報変数は以下の通りである.

$$\pi \ (\varphi, \lambda) \equiv \ln p_s, \tag{3.11}$$

$$T(\varphi,\lambda,\sigma): \quad \mathbf{\overline{\mathbf{\pi}}}\mathbf{\underline{\mathbf{K}}}[\mathbf{K}], \tag{3.12}$$

$$q (\varphi, \lambda, \sigma): \quad \textbf{L} \mathbb{Z} [\text{kg kg}^{-1}], \tag{3.13}$$

$$\zeta \ (\varphi, \lambda, \sigma) \equiv \frac{1}{a} \left(\frac{1}{1 - \mu^2} \frac{\partial V}{\partial \lambda} - \frac{\partial U}{\partial \mu} \right) : \quad \mathbf{\ddot{B}g} \ [\mathrm{s}^{-1}], \tag{3.14}$$

$$D(\varphi,\lambda,\sigma) \equiv \frac{1}{a} \left(\frac{1}{1-\mu^2} \frac{\partial U}{\partial \lambda} + \frac{\partial V}{\partial \mu} \right) : \quad \Re \mathbf{k} \, [\mathrm{s}^{-1}]. \tag{3.15}$$

ここで,

$$U(\varphi, \lambda, \sigma) \equiv u(\varphi, \lambda, \sigma) \cos \varphi, \qquad (3.16)$$

$$V(\varphi, \lambda, \sigma) \equiv v(\varphi, \lambda, \sigma) \cos \varphi, \qquad (3.17)$$

u:東西風速, (3.18)

v:南北風速 (3.19)

である. 流線関数 ψ と速度ポテンシャル χ を導入すると, U, V, ζ, D はそれぞれ以下のように表わされる.

$$U = \frac{1}{a} \left(\frac{\partial \chi}{\partial \lambda} - (1 - \mu^2) \frac{\partial \psi}{\partial \mu} \right), \qquad (3.20)$$

$$V = \frac{1}{a} \left(\frac{\partial \psi}{\partial \lambda} + (1 - \mu^2) \frac{\partial \chi}{\partial \mu} \right), \qquad (3.21)$$

$$\zeta = \nabla^2 \psi, \tag{3.22}$$

$$D = \nabla^2 \chi. \tag{3.23}$$

各時間ステップで診断的に求められる変数は以下の通りである.

$$\Phi \equiv gz: ジオポテンシャル高度 [m2 s-2], \qquad (3.24)$$

$$\dot{\sigma} \equiv \frac{d\sigma}{dt} \equiv \frac{\partial\sigma}{\partial t} + \frac{u}{a\cos\varphi}\frac{\partial\sigma}{\partial\lambda} + \frac{v}{a}\frac{\partial\sigma}{\partial\varphi} + \frac{\partial\sigma}{\partial\sigma}, \qquad (3.25)$$

$$\overline{T}(\sigma): \quad \mathbf{\overline{4}} \mathbf{\overline{4}} \mathbf{\overline{2}} \mathbf{\overline{2}} [\mathbf{K}], \tag{3.26}$$

$$T'(\varphi,\lambda,\sigma) \equiv T - \overline{T}, \tag{3.27}$$

$$T_v \left(\varphi, \lambda, \sigma\right) \equiv T\left\{1 + \left(\epsilon_v^{-1} - 1\right)q\right\},\tag{3.28}$$

$$T'_{v}(\varphi,\lambda,\sigma) \equiv T_{v} - \overline{T}, \qquad (3.29)$$

$$U_A(\varphi,\lambda,\sigma) \equiv (\zeta+f)V - \dot{\sigma}\frac{\partial U}{\partial\sigma} - \frac{RT'_v}{a}\frac{\partial\pi}{\partial\lambda} + \mathcal{F}_\lambda\cos\varphi, \qquad (3.30)$$

$$V_A(\varphi,\lambda,\sigma) \equiv -(\zeta+f)U - \dot{\sigma}\frac{\partial V}{\partial\sigma} - \frac{RT'_v}{a}(1-\mu^2)\frac{\partial\pi}{\partial\mu} + \mathcal{F}_{\varphi}\cos\varphi, \qquad (3.31)$$

$$\boldsymbol{v}_{H} \cdot \nabla_{\sigma} \pi \equiv \frac{U}{a(1-\mu^{2})} \frac{\partial \pi}{\partial \lambda} + \frac{V}{a} \frac{\partial \pi}{\partial \mu}$$
(3.32)

$$\nabla_{\sigma}^{2} \equiv \frac{1}{a^{2}(1-\mu^{2})} \frac{\partial^{2}}{\partial\lambda^{2}} + \frac{1}{a^{2}} \frac{\partial}{\partial\mu} \left[(1-\mu^{2}) \frac{\partial}{\partial\mu} \right], \qquad (3.33)$$

$$KE(\varphi,\lambda,\sigma) \equiv \frac{U^2 + V^2}{2(1-\mu^2)}$$
(3.34)

$$\mathcal{D}(\zeta)$$
: 渦度の水平拡散とスポンジ層における散逸, (3.35)

$$\mathcal{D}(D)$$
: 発散の水平拡散とスポンジ層における散逸, (3.36)

 $\mathcal{D}(T)$: 熱の水平拡散, (3.37)

$\mathcal{D}(q):$ 水蒸気の水平拡散, (3.38)

$$\mathcal{F}_{\lambda}(\varphi,\lambda,\sigma)$$
: 小規模運動過程 (経度方向), (3.39)

$$\mathcal{F}_{\varphi}(\varphi,\lambda,\sigma): \qquad \mathbf{J}, \mathbf{J$$

$$Q\left(arphi,\lambda,\sigma
ight):$$
 放射,凝結,小規模運動過程等による加熱・温度変化, (3.41)

$$S_{q}\left(arphi,\lambda,\sigma
ight)$$
: 凝結,小規模運動過程等による水蒸気ソース, (3.42)

$$\mathcal{D}'(\boldsymbol{v}):$$
 摩擦熱. (3.43)

各水平拡散 (3.35)~(3.38) に関しては 3.2.7 節で説明される. 定数は以下の通りで ある.

$$a: \, \mathbf{SE} \not\in \mathbf{m},$$
 (3.44)

$$R:$$
 乾燥大気の気体定数 $[J kg^{-1} K^{-1}],$ (3.45)

$$C_p$$
: 乾燥大気の大気定圧比熱 [J kg⁻¹ K⁻¹], (3.46)

f: コリオリパラメータ $[s^{-1}],$ (3.47)

$$\kappa \equiv R/C_p,\tag{3.48}$$

 ϵ_v : 水蒸気分子量比. (3.49)

3.2.6 境界条件

鉛直流に関する境界条件は

$$\dot{\sigma} = 0 \quad at \quad \sigma = 0, \ 1. \tag{3.50}$$

である.よって (3.1) から、地表気圧の時間変化式と σ 系での鉛直速度 $\dot{\sigma}$ を求める 診断式

$$\frac{\partial \pi}{\partial t} = -\int_0^1 \boldsymbol{v}_H \cdot \nabla_\sigma \pi d\sigma - \int_0^1 D d\sigma, \qquad (3.51)$$

$$\dot{\sigma} = -\sigma \frac{\partial \pi}{\partial t} - \int_0^\sigma D d\sigma - \int_0^\sigma \boldsymbol{v}_H \cdot \nabla_\sigma \pi d\sigma, \qquad (3.52)$$

が導かれる.

3.2.7 水平拡散とスポンジ層

水平拡散とスポンジ層における渦度と発散の散逸は次のように表現する.

$$\mathcal{D}(\zeta) = \mathcal{D}_{\mathcal{H}\mathcal{D}}(\zeta) + \mathcal{D}_{\mathcal{S}\mathcal{L}}(\zeta) \tag{3.53}$$

$$\mathcal{D}(D) = \mathcal{D}_{\mathcal{H}\mathcal{D}}(D) + \mathcal{D}_{\mathcal{S}\mathcal{L}}(D)$$
(3.54)

$$\mathcal{D}(T) = \mathcal{D}_{\mathcal{H}\mathcal{D}}(T) + \mathcal{D}_{\mathcal{SL}}(T)$$
(3.55)

$$\mathcal{D}(q) = \mathcal{D}_{\mathcal{H}\mathcal{D}}(q) \tag{3.56}$$

ここで、 $\mathcal{D}_{\mathcal{HD}}$ 、 $\mathcal{D}_{\mathcal{SL}}$ はそれぞれ水平拡散とスポンジ層における散逸を表す.

水平拡散項は、次のように ∇^{N_D} の形で計算する.

$$\mathcal{D}_{\mathcal{H}\mathcal{D}}(\zeta) = -K_{HD} \left[(-1)^{N_D/2} \nabla^{N_D} - \left(\frac{2}{a^2}\right)^{N_D/2} \right] \zeta, \qquad (3.57)$$

$$\mathcal{D}_{\mathcal{H}\mathcal{D}}(D) = -K_{HD} \left[(-1)^{N_D/2} \nabla^{N_D} - \left(\frac{2}{a^2}\right)^{N_D/2} \right] D, \qquad (3.58)$$

$$\mathcal{D}_{\mathcal{H}\mathcal{D}}(T) = -(-1)^{N_D/2} K_{HD} \nabla^{N_D} T, \qquad (3.59)$$

$$\mathcal{D}_{\mathcal{H}\mathcal{D}}(q) = -(-1)^{N_D/2} K_{HD} \nabla^{N_D} q.$$
(3.60)

小さなスケールに選択的な水平拡散を表すため、慣例として N_D には $4\sim 16$ を用 いることが多い.

スポンジ層における運動量の散逸項は、東西平均成分を減衰させる場合とさせない 場合の2通りの計算法を導入する.東西平均成分も減衰させる場合には、

$$\mathcal{D}_{\mathcal{SL}}(\zeta) = -\gamma_M \zeta, \tag{3.61}$$

$$\mathcal{D}_{\mathcal{SL}}(D) = -\gamma_M D, \qquad (3.62)$$

となる. ここで, γ_M はスポンジ層における運動量の減衰係数である. 東西平均成分を減衰させない場合には,

$$\mathcal{D}_{\mathcal{SL}}(\zeta) = -\gamma_M(\zeta - \bar{\zeta}), \qquad (3.63)$$

$$\mathcal{D}_{\mathcal{SL}}(D) = -\gamma_M (D - \bar{D}), \qquad (3.64)$$

となる.ここで、一は、東西平均を表す.

スポンジ層内の温度擾乱の減衰には以下の項を導入する.

$$\mathcal{D}_{\mathcal{SL}}(T) = -\gamma_H(T - \bar{T}), \qquad (3.65)$$

ここで、 γ_H はスポンジ層における温度擾乱の減衰係数である.

減衰係数 γ_M , γ_H の σ 依存性に一般形はないが, depam では下のような σ 依存性 を考慮する.

$$\gamma_M = \begin{cases} \gamma_{M,0} \left(\frac{\sigma_0}{\sigma}\right)^{N_{SL}}, & (\sigma \le \sigma_{lim}) \\ 0. & (\sigma > \sigma_{lim}) \end{cases}$$
(3.66)

$$\gamma_{H} = \begin{cases} \gamma_{H,0} \left(\frac{\sigma_{0}}{\sigma}\right)^{N_{SL}}, & (\sigma \leq \sigma_{lim}) \\ 0. & (\sigma > \sigma_{lim}) \end{cases}$$
(3.67)

ここで、 $\gamma_{M,0}$ 、 $\gamma_{H,0}$, N_{SL} , σ_{lim} はそれぞれ、 $\sigma = \sigma_0$ における減衰係数、 σ 依存性の指数、スポンジ層の下限の σ である、dcpam では、 σ_0 はモデル最上層の σ としている.

3.2.8 水平拡散係数の値を決めるための判断材料

水平拡散係数 K_{HD} の値は問題に応じて試行錯誤して決めることになる.

判断規準の1つは、エネルギースペクトル

$$\mathcal{E}_n = \frac{1}{4} \frac{a^2}{n(n+1)} \sum_{m=-n}^n (|\tilde{\zeta}_n^m|^2 + |\tilde{D}_n^m|^2)$$
(3.68)

において (このエネルギースペクトルの表式は Koshyk and Hamiltion, 2001 による), 高波数領域におけるエネルギーの急激な減衰やエネルギーの蓄積が現れない ようにするということである. 実際には, 高波数領域におけるエネルギースペクト ルが n^{-3/5} の指数則に従っていれば良かろう, と判断することになる.

Takahashi et al. (2006) は AFES を用いて地球大気に関する高分解能計算を行い, 200hPa における運動エネルギーのスペクトルが低波数領域 (およそ n < 80) では n^{-3} の指数則に,高波数領域では $n^{-3/5}$ 則に従う水平拡散係数の値を決定している. かれらは水平拡散のオペレータとして $K_{HD}\nabla^4$ を用いた場合 ($N_D = 4$ とした場合 に対応する) について, T79L24, T159L24, T319L24, T639L24, T639L48 と分解能 を変更した計算を行った. その結果, 拡散係数の値としては

$$K_H = 1.2 \times 10^{21} n_t^{-3.22} \quad [\mathrm{m}^4 \, \mathrm{sec}^{-1}] \tag{3.69}$$

を与えるのが良いとしている. ここで, *n_t* は切断波数である. この式から, 各種の 水平分解能に応じて *K_{HD}* の値とモデルで表現される最小スケールの減衰率を計 算すると 表 3.1 となる.

切断波数	$K_H \ (\mathrm{m}^4 \ \mathrm{sec}^{-1})$	減衰率 (1/days)	減衰時間 (day)
T21	7×10^{16}	0.7	1.4
T42	7×10^{15}	1.2	0.8
T79	9×10^{14}	1.9	0.5
T159	1×10^{14}	3.2	0.3
T319	1×10^{13}	5.6	0.2
T639	1×10^{12}	9.6	0.1

表 3.1: Takahashi et al. (2006) の結果から得られた水平拡散係数の値と最小ス ケールの減衰率. $N_D = 4$ とした場合の結果を示す. ただし, T21 と T42 の計算は Takahashi et al. (2006) ではなされていない. 減衰率は $K_{HD}\left\{\frac{n(n+1)}{a^2}\right\}^2$ を用い て計算した.

更に、Takahashi et al. (2006) は、水蒸気無し・地形無しの設定のもとで Held and Suarez 実験 (Held and Suarez, 1994) も行っている. この場合、T639L24 とした時 に高波数域におけるエネルギースペクトルが指数則に従うようにするためには上 式で与えられる K_{HD} の値の 0.5 倍を使うのが良いという結果を得た.

このように,エネルギースペクトルが指数則に従うようにするためには,分解能と 実験設定に応じて試行錯誤で拡散係数を決定する必要がある.その際には,上記の 数値を目安として用いるのが良いだろう.

3.3 離散表現:鉛直離散化

ここでは支配方程式を鉛直方向に離散化する. Arakawa and Suarez(1983) に従って, (3.1)~(3.6) を鉛直方向に差分によって離散化する. 各方程式の離散化表現は次のようになる.

3.3.1 連続の式,鉛直速度

$$\frac{\partial \pi}{\partial t} = -\sum_{k=1}^{K} (D_k + \boldsymbol{v}_k \cdot \nabla \pi) \Delta \sigma_k, \qquad (3.70)$$

$$\dot{\sigma}_{k-1/2} = -\sigma_{k-1/2} \frac{\partial \pi}{\partial t} - \sum_{l=k}^{K} (D_l + \boldsymbol{v}_l \cdot \nabla \pi) \Delta \sigma_l \qquad (k = 2, \cdots, K), \qquad (3.71)$$

$$\dot{\sigma}_{1/2} = \dot{\sigma}_{K+1/2} = 0. \tag{3.72}$$

ここで,

$$\boldsymbol{v}_k \cdot \nabla \pi = \frac{U_k}{a(1-\mu^2)} \frac{\partial \pi}{\partial \lambda} + \frac{V_k}{a(1-\mu^2)} (1-\mu^2) \frac{\partial \pi}{\partial \mu}.$$
(3.73)

3.3.2 静水圧の式

$$\Phi_{1} = \Phi_{s} + C_{p}(\sigma_{1}^{-\kappa} - 1)T_{v,1}$$

= $\Phi_{s} + C_{p}\alpha_{1}T_{v,1}.$ (3.74)

$$\Phi_{k} - \Phi_{k-1} = C_{p} \left[\left(\frac{\sigma_{k-1/2}}{\sigma_{k}} \right)^{\kappa} - 1 \right] T_{v,k} + C_{p} \left[1 - \left(\frac{\sigma_{k-1/2}}{\sigma_{k-1}} \right)^{\kappa} \right] T_{v,k-1}$$

$$= C_{p} \alpha_{k} T_{v,k} + C_{p} \beta_{k-1} T_{v,k-1}.$$
(3.75)

ここで,

$$\alpha_k = \left(\frac{\sigma_{k-1/2}}{\sigma_k}\right)^{\kappa} - 1, \qquad (3.76)$$

$$\beta_k = 1 - \left(\frac{\sigma_{k+1/2}}{\sigma_k}\right)^{\kappa},\tag{3.77}$$

$$\Phi_s = gz_s \tag{3.78}$$

であり, z_s は地表面高度である.

3.3.3 運動方程式

$$\frac{\partial \zeta_k}{\partial t} = \frac{1}{a} \left(\frac{1}{1 - \mu^2} \frac{\partial V_{A,k}}{\partial \lambda} - \frac{\partial U_{A,k}}{\partial \mu} \right) + \mathcal{D}(\zeta_k), \tag{3.79}$$

$$\frac{\partial D_k}{\partial t} = \frac{1}{a} \left(\frac{1}{1 - \mu^2} \frac{\partial U_{A,k}}{\partial \lambda} + \frac{\partial V_{A,k}}{\partial \mu} \right) - \nabla^2_{\sigma} (\Phi_k + C_p \hat{\kappa}_k \overline{T}_k \pi + (KE)_k) + \mathcal{D}(D_k). \tag{3.80}$$

ここで,

$$U_{A,1} = (\zeta_1 + f)V_1 - \frac{1}{2\Delta\sigma_1}\dot{\sigma}_{3/2}(U_1 - U_2) - \frac{C_p\hat{\kappa}_1 T'_{v,1}}{a}\frac{\partial\pi}{\partial\lambda} + \mathcal{F}_{\lambda,1}\cos\varphi,$$

$$U_{A,k} = (\zeta_k + f)V_k - \frac{1}{2\Delta\sigma_k}[\dot{\sigma}_{k-1/2}(U_{k-1} - U_k) + \dot{\sigma}_{k+1/2}(U_k - U_{k+1})]$$

$$- \frac{C_p\hat{\kappa}_k T'_{v,k}}{a}\frac{\partial\pi}{\partial\lambda} + \mathcal{F}_{\lambda,k}\cos\varphi, \qquad (k = 2, \cdots, K-1)$$

$$U_{A,K} = (\zeta_K + f)V_K - \frac{1}{2\Delta\sigma_K}\dot{\sigma}_{K-1/2}(U_{K-1} - U_K) - \frac{C_p\hat{\kappa}_K T'_{v,K}}{a}\frac{\partial\pi}{\partial\lambda} + \mathcal{F}_{\lambda,K}\cos\varphi, \qquad (3.81)$$

$$V_{A,1} = -(\zeta_{1} + f)U_{1} - \frac{1}{2\Delta\sigma_{1}}\dot{\sigma}_{3/2}(V_{1} - V_{2}) - \frac{C_{p}\hat{\kappa}_{1}T_{v,1}'}{a}(1 - \mu^{2})\frac{\partial\pi}{\partial\mu} + \mathcal{F}_{\varphi,1}\cos\varphi,$$

$$V_{A,k} = -(\zeta_{k} + f)U_{k} - \frac{1}{2\Delta\sigma_{k}}[\dot{\sigma}_{k-1/2}(V_{k-1} - V_{k}) + \dot{\sigma}_{k+1/2}(V_{k} - V_{k+1})]$$

$$- \frac{C_{p}\hat{\kappa}_{k}T_{v,k}'}{a}(1 - \mu^{2})\frac{\partial\pi}{\partial\mu} + \mathcal{F}_{\varphi,k}\cos\varphi, \qquad (k = 2, \cdots, K - 1)$$

$$V_{A,K} = -(\zeta_{K} + f)U_{K} - \frac{1}{2\Delta\sigma_{K}}\dot{\sigma}_{K-1/2}(V_{K-1} - V_{K})$$

$$- \frac{C_{p}\hat{\kappa}_{K}T_{v,K}'}{a}(1 - \mu^{2})\frac{\partial\pi}{\partial\mu} + \mathcal{F}_{\varphi,K}\cos\varphi,$$
(3.82)

$$\hat{\kappa}_{k} = \frac{\sigma_{k-1/2}(\sigma_{k-1/2}^{\kappa} - \sigma_{k}^{\kappa}) + \sigma_{k+1/2}(\sigma_{k}^{\kappa} - \sigma_{k+1/2}^{\kappa})}{\sigma_{k}^{\kappa}(\sigma_{k-1/2} - \sigma_{k+1/2})}$$

$$= \frac{\sigma_{k-1/2}\alpha_{k} + \sigma_{k+1/2}\beta_{k}}{\Delta\sigma_{k}},$$
(3.83)

$$T'_{v,k} = T_{v,k} - \overline{T}_k, \tag{3.84}$$

$$(KE)_k = \frac{U_k^2 + V_k^2}{2(1 - \mu^2)}.$$
(3.85)

3.3.4 熱力学の式

$$\frac{\partial T_k}{\partial t} = -\frac{1}{a\cos\varphi} \left(\frac{1}{1-\mu^2} \frac{\partial U_k T'_k}{\partial \lambda} + \frac{\partial V_k T'_k}{\partial \mu} \right) + H_k + \frac{Q_k}{C_p} + \mathcal{D}(T_k) + \mathcal{D}'(\boldsymbol{v}).$$
(3.86)

ここで,

$$\begin{aligned} H_{k} &\equiv T_{k}^{\prime}D_{k} - \frac{1}{\Delta\sigma_{k}}[\dot{\sigma}_{k-1/2}(\hat{T}_{k-1/2} - T_{k}) + \dot{\sigma}_{k+1/2}(T_{k} - \hat{T}_{k+1/2})] \\ &+ \left\{ \alpha_{k} \left[\sigma_{k-1/2}\boldsymbol{v}_{k} \cdot \nabla\pi - \sum_{l=k}^{K} (D_{l} + \boldsymbol{v}_{l} \cdot \nabla\pi) \Delta\sigma_{l} \right] \right\} \frac{1}{\Delta\sigma_{k}} T_{\boldsymbol{v},\boldsymbol{k}} \\ &= T_{k}^{\prime}D_{k} - \frac{1}{\Delta\sigma_{k}}[\dot{\sigma}_{k-1/2}(\hat{T}_{k-1/2} - T_{k}) + \dot{\sigma}_{k+1/2}(T_{k} - \hat{T}_{k+1/2})] \\ &+ \hat{\kappa}_{k}\boldsymbol{v}_{k} \cdot \nabla\pi T_{\boldsymbol{v},\boldsymbol{k}} \\ &- \alpha_{k}\sum_{l=k+1}^{K} (D_{l} + \boldsymbol{v}_{l} \cdot \nabla\pi) \Delta\sigma_{l} \frac{T_{\boldsymbol{v},\boldsymbol{k}}}{\Delta\sigma_{k}} \\ &- \beta_{k}\sum_{l=k+1}^{K} (D_{l} + \boldsymbol{v}_{l} \cdot \nabla\pi) \Delta\sigma_{l} \frac{T_{\boldsymbol{v},\boldsymbol{k}}}{\Delta\sigma_{k}} \quad (k = 1, \cdots, K-1), \end{aligned}$$

$$\begin{aligned} H_{K} &\equiv T_{K}^{\prime}D_{K} - \frac{1}{\Delta\sigma_{K}}[\dot{\sigma}_{K-1/2}(\hat{T}_{K-1/2} - T_{K}) + \dot{\sigma}_{K+1/2}(T_{K} - \hat{T}_{K+1/2})] \\ &+ \hat{\kappa}_{K}\boldsymbol{v}_{K} \cdot \nabla\pi T_{\boldsymbol{v},K} \\ &- \alpha_{K} (D_{K} + \boldsymbol{v}_{K} \cdot \nabla\pi) \Delta\sigma_{K} \frac{T_{\boldsymbol{v},K}}{\Delta\sigma_{K}} \end{aligned}$$

であり,

$$\hat{T}_{k-1/2} = \frac{\left[\left(\frac{\sigma_{k-1/2}}{\sigma_k}\right)^{\kappa} - 1\right]\sigma_{k-1}^{\kappa}T_k + \left[1 - \left(\frac{\sigma_{k-1/2}}{\sigma_{k-1}}\right)^{\kappa}\right]\sigma_k^{\kappa}T_{k-1}}{\sigma_{k-1}^{\kappa} - \sigma_k^{\kappa}} \\ = a_k T_k + b_{k-1}T_{k-1} \qquad (k = 2, \cdots, K),$$

$$\hat{T}_{1/2} = 0,$$

$$\hat{T}_{K+1/2} = 0,$$
(3.88)

$$a_k = \alpha_k \left[1 - \left(\frac{\sigma_k}{\sigma_{k-1}} \right)^{\kappa} \right]^{-1}, \qquad (3.89)$$

$$b_k = \beta_k \left[\left(\frac{\sigma_k}{\sigma_{k+1}} \right)^{\kappa} - 1 \right]^{-1}.$$
(3.90)

3.3.5 水蒸気の式

$$\frac{\partial q_k}{\partial t} = -\frac{1}{a} \left(\frac{1}{1-\mu^2} \frac{\partial U_k q_k}{\partial \lambda} + \frac{\partial V_k q_k}{\partial \mu} \right) + R_k + S_{q,k} + \mathcal{D}(q_k).$$
(3.91)

ここで,

$$R_{1} = q_{1}D_{1} - \frac{1}{2\Delta\sigma_{1}}\dot{\sigma}_{3/2}(q_{1} - q_{2}),$$

$$R_{k} = q_{k}D_{k} - \frac{1}{2\Delta\sigma_{k}}\left[\dot{\sigma}_{k-1/2}(q_{k-1} - q_{k}) + \dot{\sigma}_{k+1/2}(q_{k} - q_{k+1})\right], \qquad (k = 2, \cdots, K - 1)$$

$$R_{K} = q_{K}D_{K} - \frac{1}{2\Delta\sigma_{K}}\dot{\sigma}_{K-1/2}(q_{K-1} - q_{K}).$$
(3.92)

3.4 離散表現:水平離散化

ここでは支配方程式を水平離散化する.水平方向の離散化はスペクトル変換法を 用いる (Bourke, 1988). 非線形項は格子点上で計算する.各方程式のスペクトル表 現は以下のようになる.スペクトル表現に関する記号の意味については 2.5 節を参 照されたい.その詳細については第 B 章を参照せよ.なお,簡単化のため,部分的 に鉛直方向添字 *k* を省略する.

3.4.1 連続の式

$$\frac{\partial \tilde{\pi}_n^m}{\partial t} = -\sum_{k=1}^K (\tilde{D}_n^m)_k \Delta \sigma_k + \frac{1}{I} \sum_{i=1}^I \sum_{j=1}^J Z_{ij} Y_n^{m*}(\lambda_i, \mu_j) w_j.$$
(3.93)

ここで,

$$Z \equiv -\sum_{k=1}^{K} \boldsymbol{v}_{k} \cdot \nabla \pi \Delta \sigma_{k}.$$
(3.94)

$$\frac{\partial \tilde{\zeta}_{n}^{m}}{\partial t} = \frac{1}{I} \sum_{i=1}^{I} \sum_{j=1}^{J} im V_{A,ij} Y_{n}^{m*}(\lambda_{i},\mu_{j}) \frac{w_{j}}{a(1-\mu_{j}^{2})} \\
+ \frac{1}{I} \sum_{i=1}^{I} \sum_{j=1}^{J} U_{A,ij}(1-\mu_{j}^{2}) \frac{\partial}{\partial \mu} Y_{n}^{m*}(\lambda_{i},\mu_{j}) \frac{w_{j}}{a(1-\mu_{j}^{2})} \\
+ \tilde{\mathcal{D}}_{M,n}^{m} \tilde{\zeta}_{n}^{m}, \\
\frac{\partial \tilde{D}_{n}^{m}}{\partial t} = \frac{1}{I} \sum_{i=1}^{I} \sum_{j=1}^{J} im U_{A,ij} Y_{n}^{m*}(\lambda_{i},\mu_{j}) \frac{w_{j}}{a(1-\mu_{j}^{2})} \\
- \frac{1}{I} \sum_{i=1}^{I} \sum_{j=1}^{J} V_{A,ij}(1-\mu_{j}^{2}) \frac{\partial}{\partial \mu} Y_{n}^{m*}(\lambda_{i},\mu_{j}) \frac{w_{j}}{a(1-\mu_{j}^{2})} \\
- \frac{n(n+1)}{a^{2}} \prod_{i=1}^{I} \sum_{j=1}^{J} (KE)_{ij} Y_{n}^{m*}(\lambda_{i},\mu_{j}) w_{j} \\
+ \frac{n(n+1)}{a^{2}} (\Phi_{n}^{m} + C_{p} \hat{\kappa}_{k} \bar{T}_{k} \pi_{n}^{m}) + \tilde{\mathcal{D}}_{M,n}^{m} \tilde{\mathcal{D}}_{n}^{m}.$$
(3.95)

ここで,

$$\tilde{\mathcal{D}}_{M,n}^{m} = -K_{HD} \left[\left\{ -\frac{n(n+1)}{a^2} \right\}^{N_D/2} - \left(\frac{2}{a^2}\right)^{N_D/2} \right] - \tilde{\gamma}_{M,k,n}^{m}, \quad (3.97)$$

$$\tilde{\gamma}_{M,k,n}^{m} = \begin{cases} \tilde{\gamma}_{M,0,n}^{m} \left(\frac{\sigma_{K}}{\sigma_{k}}\right)^{N_{SL}}, & (k \ge k_{SLlim}) \\ 0. & (k < k_{SLlim}) \end{cases}$$
(3.98)

ここで, k_{SLlim} はスポンジ層を適応する下限の k である. また, スポンジ層において東西平均成分も減衰させる場合には, $\tilde{\gamma}_{M,0,n}^m = \gamma_{M,0}$ であり, 東西平均成分を減衰させない場合には,

$$\tilde{\gamma}_{M,0,n}^{m} = \begin{cases} \gamma_{M,0}, & (m \neq 0) \\ 0, & (m = 0) \end{cases}$$
(3.99)

である.

なお、dcpam では、 K_{HD} は、打ち切り波数成分の減衰時定数 (1/e になる時間)、 τ_{HD} 、 を用いて与える². つまり、

$$K_{HD} = \frac{1}{\tau_{HD}} \left\{ \frac{N(N+1)}{a^2} \right\}^{-N_D/2}$$
(3.100)

である.

²正確には、温度擾乱の減衰時定数である....からも明らかのように、運動方程式の水平拡散項には、全角運動量を保存するための項が加わるため、 τ_{HD} は 1/eになる時間にはならない.

3.4.3 熱力学の式

$$\frac{\partial \tilde{T}_{n}^{m}}{\partial t} = -\frac{1}{I} \sum_{i=1}^{I} \sum_{j=1}^{J} im U_{ij} T_{ij}' Y_{n}^{m*}(\lambda_{i}, \mu_{j}) \frac{w_{j}}{a(1-\mu_{j}^{2})} \\
+ \frac{1}{I} \sum_{i=1}^{I} \sum_{j=1}^{J} V_{ij} T_{ij}'(1-\mu_{j}^{2}) \frac{\partial}{\partial \mu} Y_{n}^{m*}(\lambda_{i}, \mu_{j}) \frac{w_{j}}{a(1-\mu_{j}^{2})} \\
+ \frac{1}{I} \sum_{i=1}^{I} \sum_{j=1}^{J} \left(H_{ij} + \frac{Q_{ij}}{C_{p}} \right) Y_{n}^{m*}(\lambda_{i}, \mu_{j}) w_{j} \\
+ \tilde{\mathcal{D}}_{H,n}^{m} \tilde{T}_{n}^{m} \\
+ \frac{1}{I} \sum_{i=1}^{I} \sum_{j=1}^{J} \mathcal{D}_{ij}'(v) Y_{n}^{m*}(\lambda_{i}, \mu_{j}) w_{j}.$$
(3.101)

ここで,

$$\tilde{\mathcal{D}}_{H,n}^{m} = -K_{HD} \left\{ -\frac{n(n+1)}{a^2} \right\}^{N_D/2} - \tilde{\gamma}_{H,k,n}^{m}.$$
(3.102)

$$\tilde{\gamma}_{H,k,n}^{m} = \begin{cases} \tilde{\gamma}_{H,0,n}^{m} \left(\frac{\sigma_{K}}{\sigma_{k}}\right)^{N_{SL}}, & (k \ge k_{SLlim}) \\ 0, & (k < k_{SLlim}) \end{cases}$$
(3.103)

$$\tilde{\gamma}_{H,0,n}^{m} = \begin{cases} \gamma_{H,0}, & (m \neq 0) \\ 0, & (m = 0) \end{cases}$$
(3.104)

である.

3.4.4 水蒸気の式

$$\frac{\partial \tilde{q}_{n}^{m}}{\partial t} = -\frac{1}{I} \sum_{i=1}^{I} \sum_{j=1}^{J} im U_{ij} q_{ij} Y_{n}^{m*}(\lambda_{i}, \mu_{j}) \frac{w_{j}}{a(1-\mu_{j}^{2})} \\
+ \frac{1}{I} \sum_{i=1}^{I} \sum_{j=1}^{J} V_{ij} q_{ij} (1-\mu_{j}^{2}) \frac{\partial}{\partial \mu} Y_{n}^{m*}(\lambda_{i}, \mu_{j}) \frac{w_{j}}{a(1-\mu_{j}^{2})} \\
+ \frac{1}{I} \sum_{i=1}^{I} \sum_{j=1}^{J} (R_{ij} + S_{q,ij}) Y_{n}^{m*}(\lambda_{i}, \mu_{j}) w_{j} \\
+ \tilde{\mathcal{D}}_{q,n}^{m} \tilde{q}_{n}^{m}.$$
(3.105)

ここで,

$$\tilde{\mathcal{D}}_{q,n}^{m} = -K_{HD} \left\{ -\frac{n(n+1)}{a^2} \right\}^{N_D/2}$$
(3.106)

である.

3.5 離散表現:時間離散化

ここでは時間積分スキームについて記す.

時間差分には、複数の方法を組み合わせて用いる.用いる方法の概要を以下に示す.

• 力学過程

- 水平拡散およびスポンジ層における減衰項には、後方差分を用いる.
- その他の項には, leap frog 法と Crank-Nicolson 法を組み合わせた semiimplicit 法 (Bourke, 1988) を用いる.

物理過程

- 予報型の物理過程には,前方差分を用いる.
- 調節型の物理過程は, semi-implicit 法での力学過程積分後に計算された 値を用いて計算する.
- 時間フィルタ
 - 力学過程、物理過程のすべての計算後に、力学過程で用いている leap frog
 法を起源とする計算モード抑制のための時間フィルター (Asselin, 1972)
 を適応する.

この方法は,予報変数を A と表すと,以下の 3 式で表現される.

$$\frac{\dot{\mathcal{A}}^{t+\Delta t} - \bar{\mathcal{A}}^{t-\Delta t}}{2\Delta t} = \frac{1}{2} \left\{ \dot{\mathcal{A}}_{dyn,G} \left(\bar{\mathcal{A}}^{t-\Delta t} \right) + \dot{\mathcal{A}}_{dyn,G} \left(\hat{\mathcal{A}}^{t+\Delta t} \right) \right\} + \dot{\mathcal{A}}_{dyn,NG} \left(\mathcal{A}^{t} \right) + \dot{\mathcal{A}}_{dyn,dis} \left(\hat{\mathcal{A}}^{t+\Delta t} \right) + \dot{\mathcal{A}}_{phy,pred} \left(\bar{\mathcal{A}}^{t-\Delta t} \right), \quad (3.107)$$

$$\mathcal{A}^{t+\Delta t} = \hat{\mathcal{A}}^{t+\Delta t} + 2\Delta t \dot{\mathcal{A}}_{fric} \left(\hat{\mathcal{A}}^{t+\Delta t} \right) + 2\Delta t \dot{\mathcal{A}}_{phy,adj} \left(\hat{\mathcal{A}}^{t+\Delta t} \right), \qquad (3.108)$$

$$\bar{\mathcal{A}}^t = \mathcal{A}^t + \epsilon_f \left(\bar{\mathcal{A}}^{t-\Delta t} - 2\mathcal{A}^t + \mathcal{A}^{t+\Delta t} \right).$$
(3.109)

ここで、 $\dot{A}_{dyn,G}$ 、 $\dot{A}_{dyn,NG}$ はそれぞれ、力学過程において semi-implicit 法で分離された重力波項(線型項)と非重力波項(非線型項)、 $\dot{A}_{dyn,dis}$ は水平拡散とスポンジ層における減衰項、 $\dot{A}_{phy,pred}$ は予報型の物理過程項である。 \dot{A}_{fric} 、 $\dot{A}_{phy,adj}$ は、それぞれ摩擦熱による加熱項および調節型の物理過程項である。 ϵ_f は時間フィルタの係数であり、dcpam での標準値は 0.05 としている。

3.5.1 力学過程の方程式系の時間差分式

まず、semi-implicit 法を用いるために、方程式系を $T = \overline{T}_k$ である静止場に基づい て線形重力波項とそれ以外の項に分離する. 鉛直方向のベクトル表現 $A = \{A_k\}$, および行列表現 $\underline{A} = \{A_{kl}\}$ を用いると、連続の式、発散方程式、熱力学の式は、

$$\frac{\partial \tilde{\pi}_{n}^{m}}{\partial t} = \left(\frac{\partial \tilde{\pi}_{n}^{m}}{\partial t}\right)^{\text{NG}} - \boldsymbol{C} \cdot \tilde{\boldsymbol{D}}_{n}^{m}, \qquad (3.110)$$

$$\frac{\partial \tilde{\boldsymbol{D}}_{n}^{m}}{\partial t} = \left(\frac{\partial \tilde{\boldsymbol{D}}_{n}^{m}}{\partial t}\right)^{\mathrm{NG}} - \left(-\frac{n(n+1)}{a^{2}}\right) \left(\tilde{\boldsymbol{\Phi}}_{s,n}^{m} + \underline{W}\tilde{\boldsymbol{T}}_{n}^{m} + \boldsymbol{G}\tilde{\boldsymbol{\pi}}_{n}^{m}\right) + \underline{\tilde{\mathcal{D}}_{M_{n}}}^{m}\tilde{\boldsymbol{D}}_{n}^{m},$$
(3.111)

$$\frac{\partial \tilde{\boldsymbol{T}}_{n}^{m}}{\partial t} = \left(\frac{\partial \tilde{\boldsymbol{T}}_{n}^{m}}{\partial t}\right)^{\mathrm{NG}} - \underline{h}\tilde{\boldsymbol{D}}_{n}^{m} + \underline{\tilde{\mathcal{D}}_{H_{n}}}^{m}\tilde{\boldsymbol{T}}_{n}^{m}$$
(3.112)

となる³. $(\bigcap_{n}^{m} \Leftrightarrow [\bigcap_{n}^{m}$ といった表記については 2.5 節の (2.10), (2.15), (2.17) を 参照のこと. ここで, 添字 NG の付いた項は, 非重力波項であり, 以下のように表 される.

$$\left(\frac{\partial \tilde{\pi}_n^m}{\partial t}\right)^{\rm NG} = \tilde{Z}_n^m, \tag{3.113}$$

$$\begin{split} \left(\frac{\partial \tilde{D}_{k,n}^{m}}{\partial t}\right)^{\mathrm{NG}} &= \frac{1}{a} \left(\left[\frac{1}{1-\mu^{2}} \underbrace{\partial U_{A,ijk}}{\partial \lambda}\right]_{n}^{m} + \left[\frac{\partial \widetilde{V_{A,ijk}}}{\partial \mu}\right]_{n}^{m} \right) \\ &- \left(-\frac{n(n+1)}{a^{2}}\right) \left[(KE)_{k} + \sum_{l=1}^{K} W_{kl}(T_{v,l} - T_{l})\right]_{n}^{m}, \end{split}$$
(3.114)
$$\overline{{}^{3}$$
念のため注記しておくと、 $\tilde{\Phi}_{s,n}^{m} = \left(\tilde{\Phi}_{s,n}^{m}, \tilde{\Phi}_{s,n}^{m}, \cdots, \tilde{\Phi}_{s,n}^{m}\right)$ である.

$$\left(\frac{\partial \tilde{T}_{k,n}^{m}}{\partial t}\right)^{\mathrm{NG}} = -\frac{1}{a} \left(\left[\frac{1}{1-\mu^{2}} \underbrace{\partial \tilde{U}_{ijk} T'_{ijk}}_{\partial \lambda}\right]_{n}^{m} + \left[\frac{\partial \tilde{V}_{ijk} T'_{ijk}}{\partial \mu}\right]_{n}^{m} \right) + \left[\widetilde{H_{ijk}}\right]_{n}^{m}.$$
(3.115)

各項は以下の通りである。簡単化のため経度、緯度方向添字 *i*, *j* の表記を省略する。

$$Z = -\sum_{k=1}^{K} \boldsymbol{v}_{k} \cdot \nabla \pi \Delta \sigma_{k}, \qquad (3.116)$$

$$H_{k} = T_{k}^{'} D_{k}$$

$$- \frac{1}{\Delta \sigma_{k}} \left[\dot{\sigma}_{k-1/2} \left(\hat{T}'_{k-1/2} - T_{k}' \right) + \dot{\sigma}_{k+1/2} \left(T_{k}' - \hat{T}'_{k+1/2} \right) \right]$$

$$- \frac{1}{\Delta \sigma_{k}} \left[\dot{\sigma}_{k-1/2}^{NG} \left(\hat{T}_{k-1/2} - \overline{T}_{k} \right) + \dot{\sigma}_{k+1/2}^{NG} \left(\overline{T}_{k} - \hat{\overline{T}}_{k+1/2} \right) \right]$$

$$+ \hat{\kappa}_{k} T_{v,k} \boldsymbol{v}_{k} \cdot \nabla \pi$$

$$- \frac{\alpha_{k}}{\Delta \sigma_{k}} \left[T_{v,k} \sum_{l=k}^{K} \boldsymbol{v}_{l} \cdot \nabla \pi \Delta \sigma_{l} + T_{v,k}' \sum_{l=k}^{K} D_{l} \Delta \sigma_{l} \right]$$

$$- \frac{\beta_{k}}{\Delta \sigma_{k}} \left[T_{v,k} \sum_{l=k+1}^{K} \boldsymbol{v}_{l} \cdot \nabla \pi \Delta \sigma_{l} + T_{v,k}' \sum_{l=k+1}^{K} D_{l} \Delta \sigma_{l} \right] \qquad (k = 1, \cdots, K-1),$$

$$H_{K} = T_{K}' D_{K}$$

$$- \frac{1}{\Delta \sigma_{K}} \left[\dot{\sigma}_{K-1/2} \left(\hat{T}'_{K-1/2} - T_{K}' \right) + \dot{\sigma}_{K+1/2} \left(T_{K}' - \hat{T}'_{K+1/2} \right) \right]$$

$$- \frac{1}{\Delta \sigma_{K}} \left[\dot{\sigma}_{K-1/2} \left(\hat{T}_{K-1/2} - \overline{T}_{K} \right) + \dot{\sigma}_{K+1/2}^{NG} \left(\overline{T}_{K} - \hat{T}_{K+1/2} \right) \right]$$

$$+ \hat{\kappa}_{K} T_{v,K} \boldsymbol{v}_{K} \cdot \nabla \pi$$

$$- \frac{\alpha_{K}}{\Delta \sigma_{K}} \left[T_{v,K} \boldsymbol{v}_{K} \cdot \nabla \pi \Delta \sigma_{K} + T_{v,K}' D_{K} \Delta \sigma_{K} \right],$$

$$(3.117)$$

$$\dot{\sigma}_{k-1/2}^{\mathrm{NG}} = -\sigma_{k-1/2} \left(\frac{\partial \pi}{\partial t}\right)^{\mathrm{NG}} - \sum_{l=k}^{K} \boldsymbol{v}_{l} \cdot \nabla \pi \Delta \sigma_{l}$$

$$= \sigma_{k-1/2} \sum_{k=1}^{K} \boldsymbol{v}_{k} \cdot \nabla \pi \Delta \sigma_{k} - \sum_{l=k}^{K} \boldsymbol{v}_{l} \cdot \nabla \pi \Delta \sigma_{l},$$
(3.118)

$$\hat{T}'_{k-1/2} = \begin{cases}
0, & (k=1) \\
\hat{T}_{k-1/2} - \hat{\overline{T}}_{k-1/2}, & (k=2,\cdots,K) \\
0, & (k=K+1)
\end{cases}$$
(3.119)

 $\mathbf{25}$

$$\hat{\overline{T}}_{k-1/2} = \begin{cases} 0, & (k=1) \\ a_k \overline{T}_k + b_{k-1} \overline{T}_{k-1}, & (k=2,\cdots,K) \\ 0. & (k=K+1) \end{cases}$$
(3.120)

また、重力波項のベクトルおよび行列は以下のとおりである.

$$C_k = \Delta \sigma_k, \tag{3.121}$$

$$W_{kl} = C_p \alpha_l \delta_{k \ge l} + C_p \beta_l \delta_{k-1 \ge l}, \qquad (3.122)$$

$$G_k = \hat{\kappa}_k C_p T_k, \tag{3.123}$$

$$\underline{h} = \underline{Q}\underline{S} - \underline{R},\tag{3.124}$$

$$Q_{kl} = \frac{1}{\Delta\sigma_k} (\hat{\overline{T}}_{k-1/2} - \overline{T}_k) \delta_{k=l} + \frac{1}{\Delta\sigma_k} (\overline{\overline{T}}_k - \hat{\overline{T}}_{k+1/2}) \delta_{k+1=l}, \qquad (3.125)$$

$$S_{kl} = \sigma_{k-1/2} \Delta \sigma_l - \Delta \sigma_l \delta_{k \le l}, \tag{3.126}$$

$$R_{kl} = -\left(\frac{\alpha_k}{\Delta\sigma_k}\Delta\sigma_l\delta_{k\le l} + \frac{\beta_k}{\Delta\sigma_k}\Delta\sigma_l\delta_{k+1\le l}\right)\overline{T}_k,\tag{3.127}$$

$$(\tilde{\mathcal{D}}_{M,kl})_{n}^{m} = -K_{HD} \left[\left(\frac{-n(n+1)}{a^{2}} \right)^{N_{D}/2} - \left(\frac{2}{a^{2}} \right)^{N_{D}/2} \right] \delta_{k=l} -\gamma_{M,0,n}^{m} \left(\frac{\sigma_{k}}{\sigma_{K}} \right)^{N_{SL}} \delta_{k=l} \delta_{k\geq k_{SLlim}}.$$

$$(3.128)$$

$$(\tilde{\mathcal{D}}_{H,kl})_{n}^{m} = -K_{HD} \left(\frac{-n(n+1)}{a^{2}}\right)^{N_{D}/2} \delta_{k=l} -\gamma_{H,0,n}^{m} \left(\frac{\sigma_{k}}{\sigma_{K}}\right)^{N_{SL}} \delta_{k=l} \delta_{k\geq k_{SLlim}}.$$
(3.129)

 $\delta_{k < l}$ は, $k \leq l$ が成り立つとき 1, そうでないとき 0 となる関数である. なお、渦度方程式には線型重力波項がないため、ここでは示さない.4 これらの方程式に、

- 水平拡散とスポンジ層における減衰項には後退差分
- その他の項には, leap frog 法と中心差分を組み合わせた semi-implicit 法

を適応すると,

$$\delta_t \tilde{\pi}_n^m = \left(\frac{\partial \tilde{\pi}_n^m}{\partial t}\right)^{\text{NG}} - \boldsymbol{C} \cdot \overline{\boldsymbol{D}}_n^{m^t}, \qquad (3.130)$$

⁴ここは本当は方程式を書くべきだろう.後で書く.(YOT, 2009/10/11)

basic equations.tex(dynamics/dyn-tintegral-lf-si.tex) 2011/02/21(地球流体電脳倶楽部)

$$\delta_t \tilde{\boldsymbol{D}}_n^m = \left(\frac{\partial \tilde{\boldsymbol{D}}_n^m}{\partial t}\right)^{\mathrm{NG}} - \left(-\frac{n(n+1)}{a^2}\right) \left(\tilde{\boldsymbol{\Phi}}_{s,n}^m + \underline{W}\overline{\tilde{\boldsymbol{T}}_n^m}^t + \boldsymbol{G}\overline{\tilde{\pi}_n^m}^t\right) + \underline{\tilde{\mathcal{D}}_{M_n}}^m \tilde{\boldsymbol{D}}_n^{m,t+\Delta t},$$
(3.131)

$$\delta_t \tilde{\boldsymbol{T}}_n^m = \left(\frac{\partial \tilde{\boldsymbol{T}}_n^m}{\partial t}\right)^{\text{NG}} - \underline{h} \overline{\tilde{\boldsymbol{D}}_n^m}^t + \underline{\tilde{\mathcal{D}}_H}_n^m \tilde{\boldsymbol{T}}_n^{m,t+\Delta t}.$$
(3.132)

となる. ただし,

$$\delta_t \mathcal{A} \equiv \frac{1}{2\Delta t} \left(\mathcal{A}^{t+\Delta t} - \mathcal{A}^{t-\Delta t} \right), \qquad (3.133)$$

$$\overline{\mathcal{A}}^{t} \equiv \frac{1}{2} \left(\mathcal{A}^{t+\Delta t} + \mathcal{A}^{t-\Delta t} \right) = \mathcal{A}^{t-\Delta t} + \delta_{t} \mathcal{A} \Delta t.$$
(3.134)

である.

$$(3.130), (3.131), (3.132) \, \boldsymbol{\sharp} \, \boldsymbol{\mathcal{Y}}, \, \overline{\tilde{\boldsymbol{D}}_{n}^{m^{t}}} \, \boldsymbol{\iota} \, \boldsymbol{\mathcal{O}} \boldsymbol{\mathcal{N}} \boldsymbol{\mathcal{E}} \boldsymbol{\mathfrak{B}} \boldsymbol{\mathfrak{E}} \boldsymbol{\mathfrak{E}}, \\ \left[(\underline{I} - 2\Delta t \underline{\tilde{\mathcal{D}}_{M}}_{n}^{m}) - (\Delta t)^{2} \left(-\frac{n(n+1)}{a^{2}} \right) \left\{ \underline{W} (\underline{I} - 2\Delta t \underline{\tilde{\mathcal{D}}_{H}}_{n}^{m})^{-1} \underline{h} + \boldsymbol{G} \boldsymbol{C}^{T} \right\} \right] \overline{\tilde{\boldsymbol{D}}_{n}^{m^{t}}} \\ = (\underline{I} - \Delta t \underline{\tilde{\mathcal{D}}_{M}}_{n}^{m}) \tilde{\boldsymbol{D}}_{n}^{m,t-\Delta t} + \Delta t \left(\frac{\partial \underline{\tilde{\boldsymbol{D}}}_{n}^{m}}{\partial t} \right)^{\mathrm{NG}} \\ - \Delta t \left(-\frac{n(n+1)}{a^{2}} \right) \left[\underline{\tilde{\boldsymbol{\Phi}}}_{s,n}^{m} \right. \\ \left. + \underline{W} (\underline{I} - 2\Delta t \underline{\tilde{\mathcal{D}}_{H}}_{n}^{m})^{-1} \left\{ (\underline{I} - \Delta t \underline{\tilde{\mathcal{D}}_{H}}_{n}^{m}) \underline{\tilde{\boldsymbol{T}}}_{n}^{m,t-\Delta t} + \Delta t \left(\frac{\partial \underline{\tilde{\boldsymbol{T}}}_{n}^{m}}{\partial t} \right)^{\mathrm{NG}} \right\} \\ + \boldsymbol{G} \left\{ \tilde{\pi}_{n}^{m,t-\Delta t} + \Delta t \left(\frac{\partial \tilde{\pi}_{n}^{m}}{\partial t} \right)^{\mathrm{NG}} \right\} \right]$$

$$(3.135)$$

となる. ここで <u>I</u> は単位行列, C^T は C の転置ベクトルである. (3.135) を $\overline{\tilde{D}_n^{m^t}}$ に ついて解き,

$$\tilde{\boldsymbol{D}}_{n}^{m,t+\Delta t} = 2\overline{\tilde{\boldsymbol{D}}_{n}^{m}}^{t} - \tilde{\boldsymbol{D}}_{n}^{m,t-\Delta t}$$
(3.136)

および, (3.130), (3.132) により $\hat{\mathcal{A}}^{t+\Delta t}$ が求められる.

2011/02/21(地球流体電脳倶楽部)

3.6 参考文献

- Arakawa, A., Suarez, M. J., 1983: Vertical differencing of the primitive equations in sigma coordinates. *Mon. Wea. Rev.*, **111**, 34–35.
- Asselin, R. A., 1972: Frequency filter for time integrations. Mon. Wea. Rev., 100, 487–490.
- Bourke, W.P., 1988: Spectral methods in global climate and weather prediction models. *Physically-Based Modelling and Simulation of Climates and Climatic Change. Part I.*, M.E. Schlesinger (ed.), Kluwer Academic Publishers, Dordrecht, 169–220.
- Haltiner, G.J., Williams, R.T., 1980: Numerical Prediction and Dynamic Meteorology (2nd ed.). John Wiley & Sons, 477pp.
- Held, I. M. and Suarez, M. J., 1994: A proposal for the intercomparison of the dynamical cores of atmospheric general circuation models. *Bull. Am. Meteor. Soc.*, **75**, 1825–1830.
- Koshyk, J. N. and Hamiltion, K., 2001: The horizontal kinetic energy spectrum and spectral budget simulated by a high-resolution troposphere-stratospheremesosphere GCM. J. Atmos. Sci., 58, 329–348.
- Takahashi, Y. O., Hamilton, K., Ohfuchi, W., 2006: Explicit global simulation of the mesoscale spectrum of atmospheric motions. *Geophys. Res. Lett.*, 33, L12812, doi:10.1029/2006GL026429.
- 石岡 圭一, 2004: スペクトル法による数値計算入門. 東京大学出版会, 232pp.

第4章 物理過程で用いる予備変数

4.1 はじめに

物理過程の演算においては、しばしば鉛直層の境界における温度や、鉛直層の境界 や中心の高度が必要となる.ここでは、それらの計算方法を示す.

4.2 離散表現

4.2.1 鉛直層境界における温度

注: この節の内容のコードとの対応は確認していない. というより, コードの内容 がわかりにくい.

層の境界における温度は、下のように計算することにする. $1 \le k \le k_{max} - 1$ のとき、

$$T_{k+\frac{1}{2}} = \alpha_{k+\frac{1}{2}}T_k + \beta_{k+\frac{1}{2}}T_{k+1}$$
(4.1)

$$\alpha_{k+\frac{1}{2}} = \frac{\log \sigma_{k+\frac{1}{2}} - \log \sigma_{k+1}}{\log \sigma_k - \log \sigma_{k+1}}$$
(4.2)

$$\beta_{k+\frac{1}{2}} = \frac{\log \sigma_k - \log \sigma_{k+\frac{1}{2}}}{\log \sigma_k - \log \sigma_{k+1}}$$

$$(4.3)$$

とし, k = 0 のとき,

$$T_{\frac{1}{2}} = T_1$$
 (4.4)

$$T_{k_{max}+\frac{1}{2}} = T_{k_{max}} \tag{4.5}$$

とする. $1 \le k \le k_{max} - 1$ の場合の表現は, 気圧に対する対数的な線型内挿である.

4.2.2 鉛直層中心と境界における高度

層の中心における高度は、下のように計算することにする.

$$z_1 = z_s + \frac{R}{g} T_1 (1 - \sigma_1)$$
(4.6)

$$z_{k} = z_{k-1} + \frac{R}{g} T_{k-\frac{1}{2}} \frac{\sigma_{k-1} - \sigma_{k}}{\sigma_{k-\frac{1}{2}}}$$
(4.7)

一方,層の境界における高度は、下のように計算することにする.

$$z_{\frac{1}{2}} = z_s \tag{4.8}$$

$$z_{k+\frac{1}{2}} = z_{k-\frac{1}{2}} + \frac{R}{g} T_k \frac{\sigma_{k-\frac{1}{2}} - \sigma_{k+\frac{1}{2}}}{\sigma_k}$$
(4.9)

第5章 放射

5.1 はじめに

ここでは、地球流体電脳倶楽部 AGCM5 で標準として用いられていた放射モデル について述べる. このモデルは、Numaguti (1992)の放射モデルを基にして、実装 方法を一部変更したものである¹.

5.2 数理表現

放射過程による加熱率は下のように表現される.

$$Q = -\frac{1}{C_p \rho} \frac{\partial F}{\partial z} \tag{5.1}$$

$$= \frac{g}{C_p} \frac{\partial F}{\partial p} \tag{5.2}$$

$$F = F_L + F_S \tag{5.3}$$

ここで、*F_L、F_S*はそれぞれ長波放射フラックスと短波放射フラックスである.これら地球において射出された長波放射と太陽から射出された短波放射とは別々に扱われる.以下に長波放射フラックスと短波放射フラックスの表現を示す.

5.2.1 長波放射

本長波放射モデルにおいては、散乱を無視し、吸収物質としては水蒸気とそれ以外の気体を考える.全波長域を1バンドとし、k分布法を念頭に、吸収係数がバンド

¹ここで述べる放射モデルと Numaguti (1992)の放射モデルの差は,放射伝達方程式の積分を 部分積分しているかどうかの違いである.したがって,連続系では両者は等しい.離散化した時点 で差が出るはずである.どちらの方法の方が良いのかはよく分からない.

内で分布を持つ場合を考える².

このとき、放射伝達方程式は下のように書くことができる.

$$F_L(\tau) = \pi B_s \mathcal{T}(\tau_s, \tau) - \int_0^{\tau_s} \pi B(\tau') \frac{d\mathcal{T}(\tau, \tau')}{d\tau'} d\tau'$$
(5.4)

$$\pi B(\tau) = \sigma_{SB} T^4(\tau) \tag{5.5}$$

$$\pi B_s = \sigma_{SB} T_s^4 \tag{5.6}$$

$$\mathcal{T}(\tau,\tau') = \mathcal{T}(\tau(p),\tau(p'))
= \int_{0}^{1} \exp[-\alpha\{|\tau_{L,wv}(p,g) - \tau_{L,wv}(p',g)| + |\tau_{L,da}(p,g) - \tau_{L,da}(p',g)|\}]dg \quad (5.7)$$

$$\tau_{L,wv}(p,g) = k_{L,wv} \int_{z(p)}^{\infty} \rho q_{wv} dz'$$
(5.8)

$$= k_{L,wv} \frac{1}{g} \int_0^p q_{wv} dp' \tag{5.9}$$

$$\tau_{L,da}(p,g) = k_{L,da} \int_{z(p)}^{\infty} \rho dz'$$
(5.10)

$$= k_{L,da} \frac{p}{g} \tag{5.11}$$

である. ここで, σ_{SB} はステファン・ボルツマン定数であり, α は散光因子である. $k_{L,wv}$, $k_{L,da}$ はそれぞれ長波放射における水蒸気とそれ以外の気体の吸収係数である. g は積算確率関数 (のようなもの) である.

5.2.2 短波放射

本短波放射モデルにおいては、大気内での散乱を無視し、吸収物質としては水蒸気 とそれ以外の気体を考える.全波長域を1バンドとし、k分布法を念頭に、吸収係 数がバンド内で分布を持つ場合を考える³.

ただし、地球を念頭に置くと、実際には大気分子による散乱(レイリー散乱)や雲による散乱が無視できない。そこで、これら散乱過程の効果を大雑把に考慮するため、大気アルベド *A_a* というパラメータを導入し、大気の上端においてある割合の放射エネルギーが反射するとする.

radiation/radiation.tex(radiation/radiation-math.tex)

²この考え方がよくある k 分布法の考え方と整合的かどうか良くわからない. しかし, Numaguti (1992) の定式化に物理的意味を付けるとすると, このようになると思われる. ³この考え方は長波放射と同様である.
このとき、放射伝達方程式は下のように書くことができる.

$$F_{S}(\tau) = -(1 - A_{a})F_{0}(\chi)\mathcal{T}_{dir}(\tau, \chi) + (1 - A_{a})F_{0}(\chi)A_{s}\mathcal{T}_{dif}(\tau, \chi)$$
(5.12)
$$\mathcal{T}_{dir}(\tau, \chi) = \mathcal{T}_{dir}(\tau(p), \chi)$$

$$= \int_{0}^{1} \exp[-\sec\chi\{\tau_{S,wv}(p,g) + \tau_{S,da}(p,g)\}]dg$$
(5.13)
$$\mathcal{T}_{dif}(\tau,\chi) = \mathcal{T}_{dif}(\tau(p),\chi)$$

$$\begin{aligned} & \underset{lif}{dif}(\tau,\chi) &= & I_{dif}(\tau(p),\chi) \\ &= & \int_{0}^{1} \exp[-\sec\chi\{\tau_{S,wv}(p_{s},g) + \tau_{S,da}(p_{s}g)\}] \\ & \quad \cdot \exp[-\alpha\{|\tau_{S,wv}(p_{s},g) - \tau_{S,wv}(p,g)| \\ & \quad + |\tau_{S,v}(p_{s},g) - \tau_{S,vv}(p,g)| \end{aligned}$$

$$+|\tau_{S,da}(p_s,g) - \tau_{S,da}(p,g)|\}]ag$$
(5.14)

$$\tau_{S,wv}(p,g) = k_{S,wv} \int_{z(p)}^{\infty} \rho q_{wv} dz'$$
(5.15)

$$= k_{S,wv} \frac{1}{g} \int_{0}^{p} q_{wv} dp'$$
 (5.16)

$$\tau_{S,da}(p,g) = k_{S,da} \int_{z(p)}^{\infty} \rho dz'$$
(5.17)

$$= k_{S,da} \frac{p}{g} \tag{5.18}$$

ここで, χ は太陽天頂角⁴ であり, α は散光因子である. $k_{S,wv}$, $k_{S,da}$ はそれぞれ短 波放射における水蒸気とそれ以外の気体の吸収係数である.また、A。は惑星表面 アルベドである. $F_0(\chi)$ は、天頂角 χ における大気上端での恒星の放射フラックス である.

大気上端での恒星の放射フラックス 5.2.3

大気上端での恒星の放射フラックス $F_0(\chi)$ は,

$$F_0(\chi) = F_{00} \left(\frac{1}{r_s}\right)^2 \cos \chi$$
 (5.19)

と書くことができる. ここで, F₀₀ は軌道長半径における恒星の放射フラックスで あり、r_Sは惑星の軌道長半径で規格化した恒星-惑星間距離である.

 $\cos \chi \, \mathbf{l} \mathbf{t},$

$$\cos \chi = \cos \phi \cos \delta_S \cos H + \sin \phi \sin \delta_S \tag{5.20}$$

4恒星天頂角という言葉があるだろうか?

2011/02/21(地球流体電脳倶楽部) radiation/radiation.tex(radiation/radiation-math.tex)

と表わされる. ここで, ϕ , δ_S , H はそれぞれ緯度, 赤道傾斜角⁵, 時角⁶, である. r_S は惑星の軌道要素から計算される.

なお、年平均、日平均日射分布は…いずれ…、⁷.

5.3 離散表現

この節の内容のコードとの対応は確認していない.と言うより、コードの方を直し ていない.

放射加熱率は下のように離散化される.

$$Q_k = \frac{g}{C_p} \frac{F_{k+\frac{1}{2}} - F_{k-\frac{1}{2}}}{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}$$
(5.21)

5.3.1 長波放射

長波放射フラックスは下のように離散化される.

$$F_{k+\frac{1}{2}} = \pi B_s \mathcal{T}_{k+\frac{1}{2},\frac{1}{2}} - \sum_{k'=1}^{k_{max}} \pi B_{k'} \left(\mathcal{T}_{k+\frac{1}{2},k'-\frac{1}{2}} - \mathcal{T}_{k+\frac{1}{2},k'+\frac{1}{2}} \right)$$
(5.22)

$$\pi B_k = \sigma_{SB} T_k^4 \tag{5.23}$$

$$\pi B_s = \sigma_{SB} T_s^4 \tag{5.24}$$

$$\mathcal{T}_{k+\frac{1}{2},k'+\frac{1}{2}} = \sum_{l=1}^{max,c} \Delta g_{L,l} \exp(-\alpha(|\tau_{L,wv,k+\frac{1}{2},l} - \tau_{L,wv,k'+\frac{1}{2},l}| + |\tau_{L,da,k+\frac{1}{2},l} - \tau_{L,da,k'+\frac{1}{2},l}|))$$
(5.25)

$$\tau_{L,wv,k-\frac{1}{2},l} = k_{L,wv,l} M_{wv,k-\frac{1}{2}}$$
(5.26)

$$\tau_{L,da,k-\frac{1}{2},l} = k_{L,da,l} M_{da,k-\frac{1}{2}}$$
(5.27)

$$M_{wv,k-\frac{1}{2}} = \sum_{k'=k}^{k_{max}} q_{wv,k'} \frac{p_{k'-\frac{1}{2}} - p_{k'+\frac{1}{2}}}{g}$$
(5.28)

$$M_{da,k-\frac{1}{2}} = \frac{p_{k-\frac{1}{2}}}{g} \tag{5.29}$$

5正しい用語がわからない. 恒星の赤径というのだろうか?

⁶恒星直下点の経度を基準にした経度.上手い説明がわからない.

⁷地球のパラメータの場合の式・数値はあるが、あまり書く気にならないな.

$$\mathcal{T}_{k+\frac{1}{2},k'+\frac{1}{2}} = \sum_{l=1}^{l_{max,S}} \Delta g_{L,l} \exp(-\alpha (k_{L,wv,l} | M_{wv,k+\frac{1}{2}} - M_{wv,k'+\frac{1}{2}} | +k_{L,da,l} | M_{da,k+\frac{1}{2}} - M_{da,k'+\frac{1}{2}} |))$$
(5.30)

$$M_{wv,k-\frac{1}{2}} = \sum_{k'=k}^{k_{max}} q_{wv,k'} \frac{p_{k'-\frac{1}{2}} - p_{k'+\frac{1}{2}}}{g}$$
(5.31)

$$M_{da,k-\frac{1}{2}} = \frac{p_{k-\frac{1}{2}}}{g} \tag{5.32}$$

ここで、*l_{max.L}*は、長波放射における、積算確率関数に対する積分の分点の数(領域 の数) であり, Δq_{Ll} は積算確率関数の l 番目の領域の幅である.

放射過程の一部は、惑星表面の熱収支を通して鉛直拡散過程や惑星表面の熱収支と 関係しており、それらの方程式を連立して同時に解くことになる、鉛直拡散過程や 惑星表面の熱収支は陰解法で計算しているため、放射伝達方程式の一部について 線型化し、放射フラックスの温度に対する変化率を求めておく必要がある. 放射フ ラックスの温度に対する変化率は,

$$\frac{\partial F_{k+\frac{1}{2}}}{\partial T_s} = \frac{\partial \pi B_s}{\partial T_s} \mathcal{T}_{k+\frac{1}{2},\frac{1}{2}}$$
(5.33)

$$= 4\pi\sigma_{SB}T_s^3\mathcal{T}_{k+\frac{1}{2},\frac{1}{2}}$$
(5.34)

$$\frac{\partial F_{k+\frac{1}{2}}}{\partial T_{k'}} = -\frac{\partial \pi B_{k'}}{\partial T_{k'}} \left(\mathcal{T}_{k+\frac{1}{2},k'-\frac{1}{2}} - \mathcal{T}_{k+\frac{1}{2},k'+\frac{1}{2}} \right)$$
(5.35)

$$= -4\sigma_{SB}T_{k'}^3 \left(\mathcal{T}_{k+\frac{1}{2},k'-\frac{1}{2}} - \mathcal{T}_{k+\frac{1}{2},k'+\frac{1}{2}} \right)$$
(5.36)

となる. これらにより、放射フラックスは、

$$F_{k+\frac{1}{2}}^{n+1} = F_{k+\frac{1}{2}}^{n-1} + \frac{\partial F_{k+\frac{1}{2}}}{\partial T_s} \Delta T_s + \sum_{k'=1}^{k_{max}} \frac{\partial F_{k+\frac{1}{2}}}{\partial T_{k'}} \Delta T_{k'}$$
(5.37)

$$\Delta T_s = T_s^{n+1} - T_s^{n-1} \tag{5.38}$$

$$\Delta T_k = T_k^{n+1} - T_k^{n-1} \tag{5.39}$$

として求められる、ただし、上記の式ではすべての層について和をとっているが、 実際は最下層の寄与のみ考慮し、

$$F_{k+\frac{1}{2}}^{n+1} = F_{k+\frac{1}{2}}^{n-1} + \frac{\partial F_{k+\frac{1}{2}}}{\partial T_s} \Delta T_s + \frac{\partial F_{k+\frac{1}{2}}}{\partial T_1} \Delta T_1$$
(5.40)

とするのが現実的である⁸.

⁸放射過程,鉛直拡散過程,惑星表面熱収支,土壌中の熱収支の式をまとめて整理したものを三重 対角行列にするためである.

5.3.2 短波放射

短波放射フラックスは下のように離散化される.

$$F_{k+\frac{1}{2}} = -(1-A_a)F_0(\chi)\mathcal{T}_{dir,k+\frac{1}{2}}(\chi) + (1-A_a)F_0(\chi)A_s\mathcal{T}_{dif,k+\frac{1}{2}}(\chi)$$
(5.41)

$$\mathcal{T}_{dir,k+\frac{1}{2}}(\chi) = \sum_{l=1}^{l_{max,S}} \exp\left[-\sec\chi\{\tau_{S,wv,k+\frac{1}{2},l} + \tau_{S,da,k+\frac{1}{2},l}\}\right] \Delta g_{S,l}$$
(5.42)

$$\mathcal{T}_{dif,k+\frac{1}{2}}(\chi) = \sum_{l=1}^{l_{max,S}} \exp\left[-\sec\chi\{\tau_{S,wv,\frac{1}{2},l} + \tau_{S,da,\frac{1}{2},l}\}\right] \\ \cdot \exp\left[-\alpha\{\tau_{S,wv,\frac{1}{2},l} - \tau_{S,wv,k+\frac{1}{2},l} + \tau_{S,da,\frac{1}{2},l} - \tau_{S,da,k+\frac{1}{2},l}\}\right] \Delta g_{S,l} \quad (5.43)$$

$$\tau_{S,wv,k-\frac{1}{2},l} = k_{S,wv,l} M_{wv,k-\frac{1}{2}}$$
(5.44)

$$\tau_{S,da,k-\frac{1}{2},l} = k_{S,da,l} M_{da,k-\frac{1}{2}} \tag{5.45}$$

ここから下は消す予定.

$$\mathcal{T}_{dir,k+\frac{1}{2}}(\chi) = \sum_{l=1}^{l_{max,S}} \Delta g_{S,l} \exp\left[-\sec\chi\{k_{S,wv,l}M_{wv,k+\frac{1}{2}} + k_{S,da,l}M_{da,k+\frac{1}{2}}\}\right] \Delta g_l$$
(5.46)

$$\mathcal{T}_{dif,k+\frac{1}{2}}(\chi) = \sum_{l=1}^{l_{max,S}} \exp\left[-\sec\chi\{k_{S,wv,l}M_{wv,\frac{1}{2}} + k_{S,da,l}M_{da,\frac{1}{2}}\}\right] \\ \exp\left[-\alpha\{k_{S,wv,l}|M_{wv,\frac{1}{2}} - M_{wv,k+\frac{1}{2}}| + k_{S,da,l}|M_{da,\frac{1}{2}} - M_{da,k+\frac{1}{2}}|\}\right] \Delta g_{S,l} \quad (5.47)$$

ここで、 $l_{max,S}$ は、短波放射における積算確率関数に対する積分の分点の数 (領域の数)であり、 $\Delta g_{S,l}$ は積算確率関数の l 番目の領域の幅である.

5.4 参考文献

Numaguti, A., 1982: 熱帯における積雲活動の大規模構造に関する数値実験, 東京 大学博士論文.

5.5 数理表現

5.5.1 散乱のない場合の長波放射

本長波放射モデルにおいては、散乱を無視した放射伝達方程式について記述する.

考える波数帯における透過率は別途何らかの方法で与えられるとすると,放射伝達 方程式は下のように書くことができる.

$$F_L(\tau) = F_L^+(\tau) - F_L^-(\tau)$$
(5.48)

$$F_L(\tau)^+ = \pi B_s \mathcal{T}(\tau_s, \tau) - \int_{\tau}^{\tau_s} \pi B(\tau') \frac{d\mathcal{T}(\tau, \tau')}{d\tau'} d\tau'$$
(5.49)

$$F_L(\tau)^- = \int_0^\tau \pi B(\tau') \frac{d\mathcal{T}(\tau,\tau')}{d\tau'} d\tau'$$
(5.50)

また,放射フラックスを上向きと下向きに分ける必要がなければ,フラックスは下のように書ける.

$$F_L(\tau) = \pi B_s \mathcal{T}(\tau_s, \tau) - \int_0^{\tau_s} \pi B(\tau') \frac{d\mathcal{T}(\tau, \tau')}{d\tau'} d\tau'$$
(5.51)

ここで, B はプランク関数, あるいはその積分値であり, T は透過率である. B は,

$$\pi B(\tau) = \pi \int_{k_{min}}^{k_{max}} B(T(\tau)) dk$$
(5.52)

$$\pi B_s = \pi \int_{k_{min}}^{\kappa_{max}} B(T_s) \, dk \tag{5.53}$$

である. ここで, k は波数であり, B(T) はプランク関数である. … B の文字がか ぶっている. 特に灰色大気を考える場合には, ステファン・ボルツマン定数 σ_{SB} を 用いて,

$$\pi B(\tau) = \sigma_{SB} T^4(\tau) \tag{5.54}$$

$$\pi B_s = \sigma_{SB} T_s^4 \tag{5.55}$$

となる.

なお、下部境界にフラックスの値を与えることもでき、その時には、与えるフラックスを F_{LB} として、 $\pi B_s = F_{LB}$ とすればよい.

透過率 $T(\tau, \tau')$ は、例えば光学的厚さが与えられる場合、下のようにあらわされる.

$$\mathcal{T}(\tau, \tau') = \mathcal{T}(\tau(p), \tau(p'))$$

= exp[-\alpha{|\tau_L(p) - \tau_L(p')|]} (5.56)

^{2011/02/21(}地球流体電脳倶楽部) radiation/radiation.tex(radiation/radiation-util-math.tex)

 α は散光因子である. 光学的厚さはどのように与えても良いが, 例えば Schneider and Liu (2009) では, 下のように与えている.

$$\tau_L(p) = \tau_{L,0} \left(\frac{p}{p_0}\right)^2 \tag{5.57}$$

ここで, p_0 , $\tau_{L,0}$ はそれぞれ基準気圧とその気圧での光学的厚さである.

一方, Numaguti et al. (1992) の放射モデルでは, (k 分布法に似せた記述をしていることを除くと) 下のように与えている.

$$\tau_L(p) = k_{L,wv} \int_{z(p)}^{\infty} \rho q_{wv} dz' + k_{L,da} \int_{z(p)}^{\infty} \rho dz'$$
(5.58)

$$= k_{L,wv} \frac{1}{g} \int_0^p q_{wv} dp' + k_{L,da} \frac{p}{g}$$
(5.59)

ここで、 $k_{L,wv}, k_{L,da}$ はそれぞれ水蒸気と乾燥大気の吸収係数であり、 q_{wv} は比湿である.

一方,バンドモデルを用いる場合は,別途異なる表現で与えられる.

5.6 離散表現

この節の内容のコードとの対応は確認していない. 符号が違うかも.

5.6.1 長波放射

長波放射フラックスは下のように離散化される.

$$F_{k+\frac{1}{2}} = F_{k+\frac{1}{2}}^{+} - F_{k+\frac{1}{2}}^{-}$$
(5.60)

$$F_{k+\frac{1}{2}}^{+} = \pi B_{s} \mathcal{T}_{k+\frac{1}{2},\frac{1}{2}} - \sum_{k'=1}^{k} \pi B_{k'} \left(\mathcal{T}_{k+\frac{1}{2},k'-\frac{1}{2}} - \mathcal{T}_{k+\frac{1}{2},k'+\frac{1}{2}} \right)$$
(5.61)

$$F_{k+\frac{1}{2}}^{-} = \sum_{k'=k+1}^{k_{max}} \pi B_{k'} \left(\mathcal{T}_{k+\frac{1}{2},k'-\frac{1}{2}} - \mathcal{T}_{k+\frac{1}{2},k'+\frac{1}{2}} \right)$$
(5.62)

また、放射フラックスを上向きと下向きに分ける必要がなければ下のように書ける.

$$F_{k+\frac{1}{2}} = \pi B_s \mathcal{T}_{k+\frac{1}{2},\frac{1}{2}} - \sum_{k'=1}^{k_{max}} \pi B_{k'} \left(\mathcal{T}_{k+\frac{1}{2},k'-\frac{1}{2}} - \mathcal{T}_{k+\frac{1}{2},k'+\frac{1}{2}} \right)$$
(5.63)

ここで, *B* は

$$\pi B_k = \pi \sum_{i}^{N} B_i (T_k, k_i) w_i$$
(5.64)

$$\pi B_s = \pi \sum_{i}^{N} B_i (T_{s,k}, i_i) w_i$$
(5.65)

ここでは、*w* はガウス重みであり、波数積分はガウス求積法で評価する.または、灰 色大気の場合には、

$$\pi B_k = \sigma_{SB} T_k^4 \tag{5.66}$$

$$\pi B_s = \sigma_{SB} T_s^4 \tag{5.67}$$

となる.

また、光学的厚さが与えられる場合の透過率は下のように離散化される.

$$\mathcal{T}_{k+\frac{1}{2},k'+\frac{1}{2}} = \exp(-\alpha(|\tau_{L,k+\frac{1}{2}} - \tau_{L,k'+\frac{1}{2}}|))$$
(5.68)

一方,放射過程の一部は,惑星表面の熱収支を通して鉛直拡散過程や惑星表面の熱 収支と関係しており,それらの方程式を連立して同時に解くことになる.鉛直拡散 過程や惑星表面の熱収支は陰解法で計算しているため,放射伝達方程式の一部につ いて線型化し,放射フラックスの温度に対する変化率を求めておく必要がある.放 射フラックスの温度に対する変化率は,

$$\frac{\partial F_{k+\frac{1}{2}}}{\partial T_s} = \frac{\partial \pi B_s}{\partial T_s} \mathcal{T}_{k+\frac{1}{2},\frac{1}{2}}$$
(5.69)

$$\frac{\partial F_{k+\frac{1}{2}}}{\partial T_{k'}} = -\frac{\partial \pi B_{k'}}{\partial T_{k'}} \left(\mathcal{T}_{k+\frac{1}{2},k'-\frac{1}{2}} - \mathcal{T}_{k+\frac{1}{2},k'+\frac{1}{2}} \right)$$
(5.70)

となる. これらにより, 放射フラックスは,

$$F_{k+\frac{1}{2}}^{n+1} = F_{k+\frac{1}{2}}^{n-1} + \frac{\partial F_{k+\frac{1}{2}}}{\partial T_s} \Delta T_s + \sum_{k'=1}^{k_{max}} \frac{\partial F_{k+\frac{1}{2}}}{\partial T_{k'}} \Delta T_{k'}$$
(5.71)

$$\Delta T_s = T_s^{n+1} - T_s^{n-1} \tag{5.72}$$

$$\Delta T_k = T_k^{n+1} - T_k^{n-1} \tag{5.73}$$

として求められる.ただし、上記の式ではすべての層について和をとっているが、 実際は最下層の寄与のみ考慮し、

$$F_{k+\frac{1}{2}}^{n+1} = F_{k+\frac{1}{2}}^{n-1} + \frac{\partial F_{k+\frac{1}{2}}}{\partial T_s} \Delta T_s + \frac{\partial F_{k+\frac{1}{2}}}{\partial T_1} \Delta T_1$$
(5.74)

とするのが現実的である⁹.

⁹放射過程,鉛直拡散過程,惑星表面熱収支,土壌中の熱収支の式をまとめて整理したものを三重 対角行列にするためである.

2011/02/21(地球流体電脳倶楽部) radiation/radiation.tex(radiation/radiation-util-disc.tex)

第6章 積雲パラメタリゼーション

6.1 はじめに

ほとんどの大気大循環モデルにおいては積雲を様に表現するだけの分解能を持た ないので、雲の発生する条件並びに雲が大気大循環に与える影響については何らか の方法で評価せざるを得ない.この評価方法は一般に積雲パラメタリゼーションと 呼ばれる.

現在の dcpam5 では湿潤対流調節 (Manabe *et al.*, 1965) を実装してある. また, そ もそも大気が過飽和状態にあれば降水が起こる. これを非対流性凝結 (大規模凝結) という. これについては別紙『非対流性凝結 (大規模凝結)』を参照のこと.

6.2 湿潤対流調節

6.2.1 離散表現

ここでは、湿潤対流調節 (e.g., Manabe et al., 1965)の定式化について解説する. な お、乾燥対流調節の定式化は、水蒸気がないという条件の下で、湿潤対流調節の式 から容易に導出できるため、ここに示す式は乾燥対流調節の解説にもなっている.

対流調節では,連続した2つの層において,次の条件が満たされる場合に調節を 行う.

 下層と上層の湿潤静的エネルギーの差が閾値より大きい(下層の湿潤静的エネ ルギーが上層のそれよりも大きい(温度減率が湿潤断熱減率よりも大きい)),
 ¹.

1単純には、この閾値はゼロである.しかし、実際にはモデル格子間隔内で温度・湿度の分布があ

2. 相対湿度が閾値以上².

これらは、離散化した式で表現すると下のように表わされる.

$$C_p \hat{T}_k + Lq^*(\hat{T}_k) + g\hat{z}_k - \left(C_p \hat{T}_{k+1} + Lq^*(\hat{T}_{k+1}) + g\hat{z}_{k+1}\right) > C_p \Delta T_c, \quad (6.1)$$

$$\frac{q_k}{q^*(\hat{T}_k, p_k)} \ge r_c, \qquad (6.2)$$

$$\frac{\dot{q}_{k+1}}{q^*(\hat{T}_{k+1}, p_{k+1})} \ge r_c \tag{6.3}$$

ここで、[^]は調節前の値を表す. また、 $C_p\Delta T_c$ は不安定が起こる湿潤静的エネルギー 差の閾値であり、 r_c は凝結が生じる相対湿度の閾値である.

調節時に満たす条件は,

$$\left\{C_{p}\hat{T}_{k}+L\hat{q}_{k}\right\}\frac{p_{k-\frac{1}{2}}-p_{k+\frac{1}{2}}}{g}+\left\{C_{p}\hat{T}_{k+1}+L\hat{q}_{k+1}\right\}\frac{p_{k+\frac{1}{2}}-p_{k+\frac{3}{2}}}{g}$$
$$=\left\{C_{p}T_{k}+Lq_{k}\right\}\frac{p_{k-\frac{1}{2}}-p_{k+\frac{1}{2}}}{g}+\left\{C_{p}T_{k+1}+Lq_{k+1}\right\}\frac{p_{k+\frac{1}{2}}-p_{k+\frac{3}{2}}}{g}$$
(6.4)

$$C_p T_k + Lq_k + gz_k = C_p T_{k+1} + Lq_{k+1} + gz_{k+1}$$
(6.5)

$$q_k = q^*(T_k, p_k) \tag{6.6}$$

$$q_{k+1} = q^*(T_{k+1}, p_{k+1}) \tag{6.7}$$

である.

ここで、(6.5)を静水圧平衡の式を用いて整理すると、

$$C_p(T_k - T_{k+1}) + L(q^*(T_k) - q^*(T_{k+1})) - \frac{RT_{k+\frac{1}{2}}}{p_{k+\frac{1}{2}}}(p_k - p_{k+1}) = 0$$
(6.8)

となる. したがって, ... のからなる連立一次方程式を解けば良い. なお, $T_{k+\frac{1}{2}}$ は

$$T_{k+\frac{1}{2}} = \frac{T_k + T_{k+1}}{2} \tag{6.9}$$

2011/02/21(地球流体電脳倶楽部) cumulus/cumulus.tex(cumulus/cumulus-adjust.tex.tex)

ることが考えられ,格子の平均エネルギー差がゼロ以上であっても,格子内で混合が起こることが 想像される.

²単純には、凝結が生じる相対湿度の閾値は1である.しかし、実際にはモデル格子間隔内で湿度の分布があることが考えられ、格子の平均相対湿度が1以下であっても、格子内で凝結が起こることが想像される.

と表現することにする.

ここで, q_k , q_{k+1} をテイラー展開し,

$$q_k = q^*(T_k, p_k) = q^*(\hat{T}_k, p_k) + \left. \frac{\partial q^*}{\partial T} \right|_{T=\hat{T}_k} \Delta T_k$$
(6.10)

$$q_{k+1} = q^*(T_{k+1}, p_{k+1}) = q^*(\hat{T}_{k+1}, p_{k+1}) + \frac{\partial q^*}{\partial T}\Big|_{T=\hat{T}_{k+1}} \Delta T_{k+1} \quad (6.11)$$

$$\Delta T_k = T_k - \hat{T}_k \tag{6.12}$$

$$\Delta T_{k+1} = T_{k+1} - \tilde{T}_{k+1} \tag{6.13}$$

として連立一次方程式を解くと、下の解が得られる.

$$\Delta T_{k} = \left\{ \Delta p_{k} \left(1 + \gamma_{k} \right) \right\}^{-1} \left\{ \frac{L}{C_{p}} \Delta Q - \Delta p_{k+1} \left(1 + \gamma_{k+1} \right) \Delta T_{k+1} \right\}$$
(6.14)

$$\Delta T_{k+1} = \left[F_{k+\frac{1}{2}} \left\{ \Delta p_k \left(1 + \gamma_k \right) - \Delta p_{k+1} \left(1 + \gamma_{k+1} \right) \right\} + \left(1 + \gamma_k \right) \left(1 + \gamma_{k+1} \right) \left(\Delta p_k + \Delta p_{k+1} \right) \right]^{-1} \\ \left[\Delta p_k \left(1 + \gamma_k \right) S_{k+\frac{1}{2}} + \left\{ 1 + \gamma_k - F_{k+\frac{1}{2}} \right\} \frac{L}{C_p} \Delta Q \right]$$
(6.15)

$$\Delta p_k = p_{k-\frac{1}{2}} - p_{k+\frac{1}{2}} \tag{6.16}$$

$$F_{k+\frac{1}{2}} = \frac{R}{C_p} \frac{p_k - p_{k+1}}{2p_{k+\frac{1}{2}}}$$
(6.17)

$$S_{k+\frac{1}{2}} = \hat{T}_k - \hat{T}_{k+1} + \frac{L}{C_p} \left\{ q^*(\hat{T}_k, p_k) - q^*(\hat{T}_{k+1}, p_{k+1}) \right\} - F_{k+\frac{1}{2}} \left(\hat{T}_k + \hat{T}_{k+1} \right)$$
(6.18)

$$\Delta Q = \Delta p_k \left\{ \hat{q}_k - q^*(\hat{T}_k, p_k) \right\} + \Delta p_{k+1} \left\{ \hat{q}_{k+1} - q^*(\hat{T}_{k+1}, p_{k+1}) \right\}$$
(6.19)

$$\gamma_k = \frac{L}{C_p} \left. \frac{\partial q^*}{\partial T} \right|_{T = \hat{T}_k} \tag{6.20}$$

実際には、上記の解は q_k , q_{k+1} をテイラー展開して求めた近似解でしかなく、正確 には … を満たしていない. さらに、上記の定式化は、k 番目の層と k+1 番目の層 の混合を表記しているだけであるが、実際には 3 層以上の層にわたる混合も起こ りえる. そこで、上記の調節を何度か繰り返し行うことで、徐々に調節していく.

なお、降水量は、

$$P = -\frac{1}{2\Delta t} \sum_{k=k_{max}}^{1} \frac{p_{k-\frac{1}{2}} - p_{k+\frac{1}{2}}}{g} \Delta q_k$$

= $-\frac{1}{2\Delta t} \sum_{k=k_{max}}^{1} \frac{p_{k-\frac{1}{2}} - p_{k+\frac{1}{2}}}{g} \{(q_k)_{l_{max}+1} - \hat{q}_k\}$ (6.21)

cumulus/cumulus.tex(cumulus/cumulus-references.tex.tex) 2011/02/21(地球流体電脳倶楽部)

である³.

6.3 参考文献

Manabe, S., Smagorinsky, J., Strickler, R.F., 1965: Simulated climatology of a general circulation model with a hydrologic cycle. Mon. Weather Rev., 93, 769–798.

³ここで,鉛直方向の和は上層から下層に向けて和を取ることにしている.これは,上層の方が凝結量が少ないためである.

^{2011/02/21(}地球流体電脳倶楽部) cumulus/cumulus.tex(cumulus/cumulus-references.tex.tex)

第7章 非対流性凝結 (大規模凝結)

7.1 離散表現

格子点の相対湿度が閾値を超えた場合, Manabe et al. (1965) に従い, 非対流性凝結 (以後, 大規模凝結と呼ぶ) が生じると考える¹. 凝結した水は速やかに降水となって落下し, 雨水の蒸発は考えない.

大規模凝結は下の条件が成り立つときに生じる.

$$\frac{\hat{q}_k}{q^*(\hat{T}_k, p_k)} \ge r_c \tag{7.1}$$

ここで、[^]は調節前の値を表し、*r*_cは凝結が生じる相対湿度の閾値である.

大規模凝結時に満たす条件は、

$$C_p \hat{T}_k + L \hat{q}_k = C_p T_k + L q_k \tag{7.2}$$

$$q_k = q^*(T_k, p_k) \tag{7.3}$$

である.

 q_k を、テイラー展開して一次の項までとると、

$$q_k = q^*(T_k, p_k) = q^*(\hat{T}_k, p_k) + \left. \frac{\partial q^*}{\partial T} \right|_{T=\hat{T}_k} \Delta T_k$$
(7.4)

lscond/lscond.tex

¹単純には、凝結が生じる相対湿度の閾値は1である.しかし、実際にはモデル格子間隔内で湿度の分布があることが考えられ、格子の平均相対湿度が1以下であっても、格子内で凝結が起こることが想像される.

となることを用いて整理すると,

$$T_k = \hat{T}_k + \Delta T_k \tag{7.5}$$

$$= \hat{T}_k + \frac{L\left\{\hat{q}_k - q^*(T_k, p_k)\right\}}{C_p + L\left.\frac{\partial q^*}{\partial T}\right|_{T=\hat{T}_k}}$$
(7.6)

$$q_k = \hat{q}_k + \Delta q_k \tag{7.7}$$

$$= q^*(\hat{T}_k, p_k) + \frac{\partial q^*}{\partial T}\Big|_{T=\hat{T}_k} \Delta T_k$$
(7.8)

となる.

ただし、… で q_k をテイラー展開で近似しているため、上記の結果は近似値である. したがって、上記の計算を繰り返し行い、繰り返しの回数を l とすると、値を

$$(T_k)_{l+1} = (T_k)_l + \Delta T_k \tag{7.9}$$

$$(q_k)_{l+1} = (q_k)_l + \Delta q_k$$
(7.10)

のように更新しながらより正しい結果に近付ける.

なお、この時、降水量は、

$$P = -\frac{1}{2\Delta t} \sum_{k=k_{max}}^{1} \frac{p_{k-\frac{1}{2}} - p_{k+\frac{1}{2}}}{g} \Delta q_k$$

= $-\frac{1}{2\Delta t} \sum_{k=k_{max}}^{1} \frac{p_{k-\frac{1}{2}} - p_{k+\frac{1}{2}}}{g} \{(q_k)_{l_{max}+1} - \hat{q}_k\}$ (7.11)

である².

7.2 参考文献

Manabe, S., Smagorinsky, J., Strickler, R.F., 1965: Simulated climatology of a general circulation model with a hydrologic cycle. Mon. Weather Rev., 93, 769–798.

²ここで,鉛直方向の和は上層から下層に向けて和を取ることにしている.これは,上層の方が凝結量が少ないためである.

第8章 乱流過程

8.1 数理表現

鉛直拡散による運動方程式,熱力学の式,成分の式における変化率は下のようにそれぞれ下のように書くことができる.

$$\left(\frac{\partial u}{\partial t}\right)_{VD} = -\frac{1}{\rho} \frac{\partial F_{m,x}}{\partial z}$$
(8.1)

$$= g \frac{\partial F_{m,x}}{\partial p} \tag{8.2}$$

$$\left(\frac{\partial v}{\partial t}\right)_{VD} = g \frac{\partial F_{m,y}}{\partial p} \tag{8.3}$$

$$\left(\frac{\partial T}{\partial t}\right)_{VD} = \frac{g}{C_p} \frac{\partial F_h}{\partial p} \tag{8.4}$$

$$\left(\frac{\partial q}{\partial t}\right)_{VD} = g \frac{\partial F_q}{\partial p} \tag{8.5}$$

ここで, $F_{m,x}$, $F_{m,y}$, F_h , F_q はそれぞれ東西方向, 南北方向の運動量フラックス, 熱フラックス, 物質のフラックスであり, 下のように表現される.

$$F_{m,x} = -\rho K_m \frac{\partial u}{\partial z} \tag{8.6}$$

$$F_{m,y} = -\rho K_m \frac{\partial v}{\partial z} \tag{8.7}$$

$$F_h = -C_p P \rho K_h \frac{\partial \theta}{\partial z} \tag{8.8}$$

$$F_q = -\rho K_q \frac{\partial q}{\partial z} \tag{8.9}$$

$$\theta = \frac{T}{P} \tag{8.10}$$

$$P = \left(\frac{p_{00}}{p}\right)^{\kappa} \tag{8.11}$$

$$\kappa = \frac{R}{C_p} \tag{8.12}$$

$$F_{m,x} = 0 \tag{8.13}$$

$$F_{m,y} = 0 \tag{8.14}$$

$$F_h = 0 \tag{8.15}$$

$$F_q = 0 \tag{8.16}$$

とし、下部境界では、バルク法を用いてフラックスを評価する場合には、

$$F_{m,x} = -\rho C_d |\boldsymbol{v}| u \tag{8.17}$$

$$F_{m,y} = -\rho C_d |\boldsymbol{v}| v \tag{8.18}$$

$$F_h = -C_p P \rho C_h |\boldsymbol{v}| (\theta - \theta_s)$$
(8.19)

$$F_q = -\rho C_q |\boldsymbol{v}| (q - q_s^*) \tag{8.20}$$

とし、摩擦の時定数 (運動量フラックスに対して) や一定値 (熱や物質フラックス に対して) を与える場合には、

$$F_{m,x} = -\frac{1}{\tau_f}u \tag{8.21}$$

$$F_{m,y} = -\frac{1}{\tau_f} v \tag{8.22}$$

$$F_h = F_{h,s} \tag{8.23}$$

$$F_q = F_{q,s} \tag{8.24}$$

とする. ただし, 上に示した下部境界における物質のフラックス F_q は水蒸気のフ ラックスである. ここで, p_{00} は基準圧力である. K_m , K_h , K_q はそれぞれ運動量, 熱, 物質の拡散係数である. C_d , C_h , C_q はそれぞれ運動量, 熱, 水蒸気のバルク係数 である. また, τ_f は下部境界における摩擦の時定数, $F_{h,s}$, $F_{q,s}$ は固定する熱フラッ クス, 水蒸気フラックスである.

 K_m, K_h, K_q , はそれぞれ Mellor and Yamada (1982) レベル 2 の方法に従って評価する. これら拡散係数の具体的な評価方法については … 節で述べる. C_d, C_h , C_q , はそれぞれ Louis et al. (1982) の方法に従って評価する. これらバルク係数の具体的な評価方法については … 節で述べる.

8.1.1 鉛直拡散係数

鉛直拡散係数, K_m , K_h , K_q , は Mellor and Yamada (1974, 1982) レベル 2 の方法 に従って評価する. Mellor and Yamada (1974, 1982) の方法に従うと, 拡散係数は下のように表現される.

$$K_m = l^2 \left| \frac{\partial \boldsymbol{v}}{\partial z} \right| S_M \tag{8.25}$$

$$K_h = l^2 \left| \frac{\partial \boldsymbol{v}}{\partial z} \right| S_H \tag{8.26}$$

$$K_q = K_h \tag{8.27}$$

ここで, l は混合距離であり,

$$l = \frac{k(z - z_s)}{1 + k(z - z_s)/l_0}$$
(8.28)

の表式を用いる.ここで、 z_s は地表面高度であり、 l_0 は支配混合距離である¹.また、

$$S_M = B_1^{\frac{1}{2}} \left(1 - R_f\right)^{\frac{1}{2}} \tilde{S}_M^{\frac{1}{2}} \tilde{S}_M$$
(8.29)

$$S_H = B_1^{\frac{1}{2}} (1 - R_f)^{\frac{1}{2}} \tilde{S}_M^{\frac{1}{2}} \tilde{S}_H$$
(8.30)

である. \tilde{S}_H, \tilde{S}_M は,

$$\tilde{S}_H = \frac{\alpha_1 - \alpha_2 R_f}{1 - R_f} \tag{8.31}$$

$$\tilde{S}_M = \frac{\beta_1 - \beta_2 R_f}{\beta_3 - \beta_4 R_f} \tilde{S}_H \tag{8.32}$$

であり、ここで、 R_f はフラックスリチャードソン数であり、 1 $\int a + a p = \sqrt{(a + a p)^2 + 4a a p}$

$$R_{f} = \frac{1}{2\beta_{2}} \left\{ \beta_{1} + \beta_{4}R_{i} - \sqrt{(\beta_{1} + \beta_{4}R_{i})^{2} - 4\beta_{2}\beta_{3}R_{i}} \right\}$$
(8.33)

と書ける. ここで R_i はリチャードソン数で

$$R_i = \frac{\frac{g}{\theta} \frac{\partial \theta}{\partial z}}{\left|\frac{\partial \mathbf{v}}{\partial z}\right|} \tag{8.34}$$

である. また,

$$\alpha_1 = 3A_2\gamma_1 \tag{8.35}$$

$$\alpha_2 = 3A_2(\gamma_1 + \gamma_2) \tag{8.36}$$

$$\beta_1 = A_1 B_1 (\gamma_1 - C_1) \tag{8.37}$$

$$\beta_2 = A_1 \left[B_1 \left(\gamma_1 - C_1 \right) + 6A_1 + 3A_2 \right]$$
(8.38)

$$\beta_3 = A_2 B_1 \gamma_1 \tag{8.39}$$

$$\beta_4 = A_2 \left[B_1 \left(\gamma_1 + \gamma_2 \right) - 3A_1 \right]$$
(8.40)

$$\gamma_1 = \frac{1}{3} - \frac{2A_1}{B_1} \tag{8.41}$$

$$\underline{\gamma_2} = \frac{B_2}{B_1} + \frac{6A_1}{B_1} \tag{8.42}$$

 1 dcpam の現在 (2010/02/20) のデフォルト値は $l_0 = 300$ m である.

であり, $(A_1, B_1, A_2, B_2, C_1) = (0.92, 16.6, 0.74, 10.1, 0.08)$ である (Mellor and Yamada, 1982).

8.1.2 バルク係数

バルク係数は, Louis et al. (1982)の方法に従って評価する.

中立もしくは安定 $(R_i \ge 0)$ な場合

中立,もしくは安定 $R_i \ge 0$ な場合には,バルク係数は下のように評価する².

$$C_d = a^2 \frac{1}{1 + 10R_i \frac{1}{\sqrt{1+5R_i}}} \tag{8.46}$$

$$C_h = a^2 \frac{1}{1 + 15R_i\sqrt{1 + 5R_i}} \tag{8.47}$$

$$a = \frac{k}{\log\left(\frac{z}{z_0}\right)}$$
(8.48)

ここで, *z* は地面からの距離, *k* はカルマン定数で k = 0.4, *z*₀ は粗度長である. な お, *z* が基準等ポテンシャル面 (地球の場合はジオイド) からの距離ではないこと に注意.

²なお, 元論文 (Louis et al., 1982) では下のように表記されている.

$$C_d = a^2 \frac{1}{1 + 2bR_i \frac{1}{\sqrt{1 + dR_i}}}$$
(8.43)

$$C_h = a^2 \frac{1}{1 + 3bR_i \sqrt{1 + dR_i}}$$
(8.44)

$$a = \frac{k}{\log\left(\frac{z+z_0}{z_0}\right)} \tag{8.45}$$

ここで, b = 5, d = 5 である. a の log の中の分子が $z + z_0$ となっている理由は不明である.

不安定 $(R_i < 0)$ な場合

不安定 $R_i < 0$ な場合には、バルク係数は下のように評価する³.

$$C_d = a^2 \left(1 - \frac{10R_i}{1 + 75a^2 \sqrt{\frac{z}{z_0} |R_i|}} \right)$$
(8.51)

$$C_h = a^2 \left(1 - \frac{15R_i}{1 + 75a^2 \sqrt{\frac{z}{z_0}|R_i|}} \right)$$
(8.52)

8.2 離散表現

dcpam では, 鉛直拡散は陰解法を用いて計算する. 運動量, 熱の鉛直拡散方程式は 下のように離散化する.

$$\frac{u_k^{t+\Delta t} - u_k^{t-\Delta t}}{2\Delta t} = g \frac{F_{m,x,k+\frac{1}{2}}^{t+\Delta t} - F_{m,x,k-\frac{1}{2}}^{t+\Delta t}}{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}$$
(8.53)

$$\frac{v_k^{t+\Delta t} - v_k^{t-\Delta t}}{2\Delta t} = g \frac{F_{m,y,k+\frac{1}{2}}^{t+\Delta t} - F_{m,y,k-\frac{1}{2}}^{t+\Delta t}}{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}$$
(8.54)

$$\frac{T_k^{t+\Delta t} - T_k^{t-\Delta t}}{2\Delta t} = \frac{1}{C_p} g \frac{F_{h,k+\frac{1}{2}}^{t+\Delta t} - F_{h,k-\frac{1}{2}}^{t+\Delta t}}{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}$$
(8.55)

一方,水蒸気の鉛直拡散に関しては、最下層以外 $(k \ge 2)$ では下のように離散化される.

$$\frac{q_k^{t+\Delta t} - q_k^{t-\Delta t}}{2\Delta t} = g \frac{F_{q,k+\frac{1}{2}}^{t+\Delta t} - F_{q,k-\frac{1}{2}}^{t+\Delta t}}{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}$$
(8.56)

³なお, 元論文 (Louis et al., 1982) では下のように表記されている.

$$C_d = a^2 \left(1 - \frac{2bR_i}{1 + 3a^2 bc \sqrt{\frac{z+z_0}{z_0}} |R_i|} \right)$$
(8.49)

$$C_h = a^2 \left(1 - \frac{3bR_i}{1 + 3a^2 bc \sqrt{\frac{z + z_0}{z_0} |R_i|}} \right)$$
(8.50)

ここで, c = 5 である. a の log の中の分子が $z + z_0$ となっている理由は不明である.

一方,最下層 (k = 1) においては、陰解法を用いて計算する場合の効率性を考慮し、
 2 つの離散化方法を用意している.1 つは、

$$\frac{q_k^{t+\Delta t} - q_k^{t-\Delta t}}{2\Delta t} = g \frac{F_{q,k+\frac{1}{2}}^{t+\Delta t} - F_{q,k-\frac{1}{2}}^{t+\Delta t}}{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}$$
(8.57)

であり,1 つは,

$$\frac{q_k^{t+\Delta t} - q_k^{t-\Delta t}}{2\Delta t} = g \frac{F_{q,k+\frac{1}{2}}^{t+\Delta t} - F_{q,k-\frac{1}{2}}^{t-\Delta t}}{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}$$
(8.58)

である.前者の場合,最下層の離散化方法は最下層以外の層 $(k \ge 2)$ と同じように離散化される.後者の場合,惑星表面のフラックスのみ $t - \Delta t$ の時刻の値が使われる⁴.なお,水蒸気以外の熱収支に関わらない物質の鉛直拡散は,...と同様に離散化する.

拡散フラックスは下のように離散化される.

$$F_{m,x,k+\frac{1}{2}} = -(TC)_{m,k+\frac{1}{2}} (u_{k+1} - u_k)$$
(8.59)

$$F_{m,y,k+\frac{1}{2}} = -(TC)_{m,k+\frac{1}{2}} (v_{k+1} - v_k)$$
(8.60)

$$F_{h,k+\frac{1}{2}} = -C_p P_{k+\frac{1}{2}} (TC)_{h,k+\frac{1}{2}} \left(\frac{T_{k+1}}{P_{k+1}} - \frac{T_k}{P_k} \right)$$
(8.61)

$$F_{q,k+\frac{1}{2}} = -(TC)_{q,k+\frac{1}{2}} (q_{k+1} - q_k)$$
(8.62)

また、上では触れていないが、本来は土壌水分量の収支も関係している.しかし、有限の土壌水分 量を考える場合、土壌が含む以上の量の水蒸気が蒸発することはないが、そのような条件を連立一 次方程式に課すことは難しく、現実的にはそれを連立して解くことはできない.このことも、上で 書いたように水蒸気の鉛直拡散を分離して解く理由である.

⁴後者の方法を利用しなければいけないのは、陰解法で離散化した結果を整理して得られる連立 一次方程式の行列を三重対角行列にするため、そして、有限の土壌水分を扱うためである.

地表面における上向き熱フラックスは、大気側から見れば、下部境界において大気に入る熱フラックスであり、この意味で、大気中の熱収支は地表面および地下の土壌の熱収支と関係している. さらに、水蒸気が存在する系では、地表面の熱収支は、惑星表面における水蒸気の蒸発と凝結を介して水蒸気の収支とも関係している. このため、本来は、熱の鉛直拡散、惑星表面の熱収支、地下の土壌の熱拡散、水蒸気の鉛直拡散を陰解法で計算するためには、すべての方程式を連立して計算しなければならない. 素直に定式化すると、これらすべてを含む連立一次方程式の行列は三重対角行列にならず、計算量が多くなってしまう. 三重対角行列にするためには、熱の鉛直拡散、地下の土壌の熱拡散(惑星表面の熱収支を含む)、水蒸気の熱拡散のうちの一つを分離して解く必要があり、現在のdcpamの定式化では、水蒸気の鉛直拡散を分離して解くことにしている $(t - \Delta t$ の時刻の惑星表面の水蒸気フラックスを用いることで、水蒸気の鉛直拡散は分離される).

一方,地下の土壌の熱拡散を計算しないモデルにおいては,熱の鉛直拡散,惑星表面の熱収支,水 蒸気の鉛直拡散を連立して得られる行列は三重対角行列になるため,問題は起こらない.これが前 者の式が用いられる場合である.

ここで、 $2 \le k \le k_{max} - 1$ のとき、

$$(TC)_{m,k+\frac{1}{2}} = \rho_{k+\frac{1}{2}} K_{m,k+\frac{1}{2}} \frac{1}{z_{k+1} - z_k}$$

$$(8.63)$$

$$(TC)_{h,k+\frac{1}{2}} = \rho_{k+\frac{1}{2}} K_{h,k+\frac{1}{2}} \frac{1}{z_{k+1} - z_k}$$
(8.64)

$$(TC)_{q,k+\frac{1}{2}} = \rho_{k+\frac{1}{2}} K_{q,k+\frac{1}{2}} \frac{1}{z_{k+1} - z_k}$$
(8.65)

$$\rho_{k+\frac{1}{2}} = \frac{p_{k+\frac{1}{2}}}{RT_{k+\frac{1}{2}}} \tag{8.66}$$

k = 1のとき、バルク法を用いてフラックスを評価する場合には、

$$F_{m,x,k-\frac{1}{2}} = -(TC)_{m,k-\frac{1}{2}}u_1 \tag{8.67}$$

$$F_{m,y,k-\frac{1}{2}} = -(TC)_{m,k-\frac{1}{2}}v_1 \tag{8.68}$$

$$F_{h,k-\frac{1}{2}} = -C_p P_{k-\frac{1}{2}} (TC)_{h,k-\frac{1}{2}} \left(\frac{T_k}{P_k} - \frac{T_s}{P_{k-\frac{1}{2}}} \right)$$
(8.69)

$$F_{q,k-\frac{1}{2}} = -\epsilon (TC)_{q,k-\frac{1}{2}} (q_k - q_s^*)$$
(8.70)

$$(TC)_{m,k-\frac{1}{2}} = \rho_s C_d |\boldsymbol{v}_k| \tag{8.71}$$

$$(TC)_{h,k-\frac{1}{2}} = \rho_s C_h |\boldsymbol{v}_k|$$
 (8.72)

$$(TC)_{q,k-\frac{1}{2}} = \rho_s C_q |\boldsymbol{v}_k|$$
 (8.73)

$$\rho_s = \frac{p_s}{RT_0} \tag{8.74}$$

であり⁵, 摩擦の時定数や一定の熱フラックス, 物質フラックスを与える場合には,

$$F_{m,x,k-\frac{1}{2}} = -(TC)_{m,k-\frac{1}{2}}u_1 \tag{8.75}$$

$$F_{m,y,k-\frac{1}{2}} = -(TC)_{m,k-\frac{1}{2}}v_1 \tag{8.76}$$

$$F_{h,k-\frac{1}{2}} = F_{h,s} \tag{8.77}$$

$$F_{q,k-\frac{1}{2}} = F_{q,s} \tag{8.78}$$

$$(TC)_{m,k-\frac{1}{2}} = \frac{1}{\tau_f}$$
 (8.79)

となる. また, $k = k_{max}$ のとき,

$$F_{m,x,k_{max}+\frac{1}{2}} = 0$$

$$F_{m,y,k_{max}+\frac{1}{2}} = 0$$
(8.80)
(8.81)

$$F_{m,y,k_{max}+\frac{1}{2}} = 0 ag{8.81}$$

$$F_{h,k_{max}+\frac{1}{2}} = 0 (8.82)$$

$$F_{q,kamx+\frac{1}{2}} = 0 (8.83)$$

 $\overline{{}^5}$ 最後は T_0 (大気の温度) なのかね? T_s ではなくて? たぶん、考え方の問題だけ. どちらが悪い とも言えないだろうけど.

となる.

8.2.1 鉛直拡散係数

鉛直拡散係数, K_m , K_h , K_q , は… に示した式で計算する. ここでは, リチャード ソン数と風速の鉛直シアーの離散表現を示すのみとする.

リチャードソン数

$$R_i = \frac{\frac{g}{\theta} \frac{\partial \theta}{\partial z}}{\left|\frac{\partial \mathbf{v}}{\partial z}\right|} \tag{8.84}$$

は、下のように離散化する.

$$R_{i,k+\frac{1}{2}} = \frac{g}{\theta_{k+\frac{1}{2}}} \frac{\theta_{k+1} - \theta_k}{z_{k+1} - z_k} \left| \frac{\partial \boldsymbol{v}}{\partial z} \right|_{k+\frac{1}{2}}^{-1}$$
(8.85)

$$\left|\frac{\partial \boldsymbol{v}}{\partial z}\right|_{k+\frac{1}{2}} = \sqrt{\left(\frac{u_{k+1}-u_k}{z_{k+1}-z_k}\right)^2 + \left(\frac{v_{k+1}-v_k}{z_{k+1}-z_k}\right)^2} \tag{8.86}$$

8.2.2 バルク係数

バルク係数は,... に示した式で計算する. ここでは,地表面のリチャードソン数の 離散表現を示すのみとする.

リチャードソン数

$$R_i = \frac{\frac{g}{\theta} \frac{\partial \theta}{\partial z}}{\left|\frac{\partial \mathbf{v}}{\partial z}\right|} \tag{8.87}$$

は、地表面においては、下のように離散化する.

$$R_{i,\frac{1}{2}} = \frac{g}{\theta_s} \frac{\theta_1 - \theta_s}{z_{k+1} - z_s} \left| \frac{\partial \boldsymbol{v}}{\partial z} \right|_{\frac{1}{2}}^{-1}$$
(8.88)

$$\frac{\partial \boldsymbol{v}}{\partial z}\Big|_{\frac{1}{2}} = \sqrt{\left(\frac{u_{k_1} - u_s}{z_1 - z_s}\right)^2 + \left(\frac{v_{k_1} - v_s}{z_1 - z_s}\right)^2} \tag{8.89}$$

$$\theta_s = \frac{T_s}{P_s} \tag{8.90}$$

$$P_s = \left(\frac{p_{00}}{p_s}\right)^{\kappa} \tag{8.91}$$

ここで、 z_s は地表面の高度、 T_s は惑星表面温度、 p_s は惑星表面気圧である⁶.

8.2.3 運動量拡散の差分方程式の整理

東西方向の運動量の鉛直拡散 … を整理すると, $2 \le k \le k_{max} - 1$ のとき,

$$-(TC)_{m,k-\frac{1}{2}} \left(u_{k-1}^{t+\Delta t} - u_{k-1}^{t-\Delta t} \right) + \left(-\frac{1}{2\Delta t} \frac{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}{g} + (TC)_{m,k-\frac{1}{2}} + (TC)_{m,k+\frac{1}{2}} \right) \left(u_{k}^{t+\Delta t} - u_{k}^{t-\Delta t} \right) - (TC)_{m,k+\frac{1}{2}} \left(u_{k+1}^{t+\Delta t} - u_{k+1}^{t-\Delta t} \right) = - \left(F_{m,x,k+\frac{1}{2}}^{t-\Delta t} - F_{m,x,k-\frac{1}{2}}^{t-\Delta t} \right)$$
(8.92)

k=1のとき、

$$\left(-\frac{1}{2\Delta t}\frac{p_{k+\frac{1}{2}}-p_{k-\frac{1}{2}}}{g}+(TC)_{m,k-\frac{1}{2}}+(TC)_{m,k+\frac{1}{2}}\right)\left(u_{k}^{t+\Delta t}-u_{k}^{t-\Delta t}\right)
-(TC)_{m,k+\frac{1}{2}}\left(u_{k+1}^{t+\Delta t}-u_{k+1}^{t-\Delta t}\right)
= -\left(F_{m,x,k+\frac{1}{2}}^{t-\Delta t}-F_{m,x,k-\frac{1}{2}}^{t-\Delta t}\right)$$
(8.93)

 $k = k_{max}$ のとき、

$$-(TC)_{m,k-\frac{1}{2}} \left(u_{k-1}^{t+\Delta t} - u_{k-1}^{t-\Delta t} \right) + \left(-\frac{1}{2\Delta t} \frac{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}{g} + (TC)_{m,k-\frac{1}{2}} \right) \left(u_{k}^{t+\Delta t} - u_{k}^{t-\Delta t} \right) = - \left(F_{m,x,k+\frac{1}{2}}^{t-\Delta t} - F_{m,x,k-\frac{1}{2}}^{t-\Delta t} \right)$$
(8.94)

となる.

これらをまとめると,

$$\boldsymbol{A}\boldsymbol{x}_u = \boldsymbol{G}_u \tag{8.95}$$

$$\boldsymbol{x}_{u} = \left(u_{1}^{t+\Delta t} - u_{1}^{t-\Delta t}, u_{2}^{t+\Delta t} - u_{2}^{t-\Delta t}, \dots, u_{k_{max}}^{t+\Delta t} - u_{k_{max}}^{t-\Delta t} \right), \quad (8.96)$$

$$\boldsymbol{G}_{u} = (g_{u,1}, g_{u,2}, \dots, g_{u,k_{max}}), \qquad (8.97)$$

$$g_{u,k} = -\left(F_{m,x,k+\frac{1}{2}}^{t-\Delta t} - F_{m,x,k-\frac{1}{2}}^{t-\Delta t}\right)$$
(8.98)

⁶ここでは, *R_i*の計算に惑星表面温度を用いているが, 惑星表面上の大気の温度を用いる方法も あるのかもしれない. どちらが良いのかはよく分からない.

$$a_{k,k-1} = -(TC)_{m,k-\frac{1}{2}}$$
(8.99)

$$a_{k,k} = -\frac{1}{2\Delta t} \frac{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}{g} + (TC)_{m,k-\frac{1}{2}} + (TC)_{m,k+\frac{1}{2}}$$
(8.100)

$$a_{k,k+1} = -(TC)_{m,k+\frac{1}{2}} \tag{8.101}$$

k=1のとき,

$$a_{k,k} = -\frac{1}{2\Delta t} \frac{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}{q} + (TC)_{m,k-\frac{1}{2}} + (TC)_{m,k+\frac{1}{2}}$$
(8.102)

$$a_{k,k+1} = -(TC)_{m,k+\frac{1}{2}}$$
(8.103)

 $k = k_{max}$ のとき、

$$a_{k,k-1} = -(TC)_{m,k-\frac{1}{2}} \tag{8.104}$$

$$a_{k,k} = -\frac{1}{2\Delta t} \frac{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}{g} + (TC)_{m,k-\frac{1}{2}}$$
(8.105)

である.

南北風に関しては、東西風と同様に下のように書くことができる.

$$\boldsymbol{A}\boldsymbol{x}_v = \boldsymbol{G}_v \tag{8.106}$$

$$\boldsymbol{x}_{v} = \left(v_{1}^{t+\Delta t} - v_{1}^{t-\Delta t}, v_{2}^{t+\Delta t} - v_{2}^{t-\Delta t}, ..., v_{k_{max}}^{t+\Delta t} - v_{k_{max}}^{t-\Delta t} \right), \qquad (8.107)$$

$$\boldsymbol{G}_{v} = (g_{v,1}, g_{v,2}, \dots, g_{v,k_{max}}), \qquad (8.108)$$

$$g_{v,k} = -\left(F_{m,y,k+\frac{1}{2}}^{t-\Delta t} - F_{m,y,k-\frac{1}{2}}^{t-\Delta t}\right)$$
(8.109)

である.

8.2.4 熱拡散の差分方程式の整理

熱の鉛直拡散の式 ... を整理すると、 2 ≤ k ≤ k_{max} - 1 のとき、 $-C_{p} \frac{P_{k-\frac{1}{2}}}{P_{k-1}} (TC)_{h,k-\frac{1}{2}} \left(T_{k-1}^{t+\Delta t} - T_{k-1}^{t-\Delta t}\right)$ $+ \left(-C_{p} \frac{1}{2\Delta t} \frac{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}{g} + C_{p} \frac{P_{k-\frac{1}{2}}}{P_{k}} (TC)_{h,k-\frac{1}{2}} + C_{p} \frac{P_{k+\frac{1}{2}}}{P_{k}} (TC)_{h,k+\frac{1}{2}}\right) \left(T_{k}^{t+\Delta t} - T_{k}^{t-\Delta t}\right)$ $-C_{p} \frac{P_{k+\frac{1}{2}}}{P_{k+1}} (TC)_{h,k+\frac{1}{2}} \left(T_{k+1}^{t+\Delta t} - T_{k+1}^{t-\Delta t}\right)$ $= -\left(F_{h,k+\frac{1}{2}}^{t-\Delta t} - F_{h,k-\frac{1}{2}}^{t-\Delta t}\right)$ (8.110) のとき, k = 1 のとき, バルク法でフラックスを評価する場合には, $-C_{p}(TC)_{h,k-\frac{1}{2}} \left(T_{s}^{t+\Delta t} - T_{s}^{t-\Delta t}\right)$ $+ \left(-C_{p}\frac{1}{2\Delta t}\frac{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}{g} + C_{p}\frac{P_{k+\frac{1}{2}}}{P_{k}}(TC)_{h,k+\frac{1}{2}} + C_{p}\frac{P_{k-\frac{1}{2}}}{P_{k}}(TC)_{h,k-\frac{1}{2}}\right) \left(T_{k}^{t+\Delta t} - T_{k}^{t-\Delta t}\right)$ $-C_{p}\frac{P_{k+\frac{1}{2}}}{P_{k+1}}(TC)_{h,k+\frac{1}{2}} \left(T_{k+1}^{t+\Delta t} - T_{k+1}^{t-\Delta t}\right)$ $= -\left(F_{h,k+\frac{1}{2}}^{t-\Delta t} - F_{h,k-\frac{1}{2}}^{t-\Delta t}\right)$ (8.111)

一定値の熱フラックスを与える場合には,

$$\begin{pmatrix} -C_p \frac{1}{2\Delta t} \frac{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}{g} + C_p \frac{P_{k+\frac{1}{2}}}{P_k} (TC)_{h,k+\frac{1}{2}} \end{pmatrix} (T_k^{t+\Delta t} - T_k^{t-\Delta t}) \\ -C_p \frac{P_{k+\frac{1}{2}}}{P_{k+1}} (TC)_{h,k+\frac{1}{2}} (T_{k+1}^{t+\Delta t} - T_{k+1}^{t-\Delta t}) \\ = -\left(F_{h,k+\frac{1}{2}}^{t-\Delta t} - F_{h,k-\frac{1}{2}}^{t-\Delta t}\right)$$

$$(8.112)$$

$$\& \texttt{Las.}, k = k_{max} \, \texttt{O} \& \texttt{E},$$

$$-C_{p} \frac{P_{k-\frac{1}{2}}}{P_{k-1}} (TC)_{h,k-\frac{1}{2}} \left(T_{k-1}^{t+\Delta t} - T_{k-1}^{t-\Delta t}\right) + \left(-C_{p} \frac{1}{2\Delta t} \frac{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}{g} + C_{p} \frac{P_{k-\frac{1}{2}}}{P_{k}} (TC)_{h,k-\frac{1}{2}}\right) \left(T_{k}^{t+\Delta t} - T_{k}^{t-\Delta t}\right) = -\left(F_{h,k+\frac{1}{2}}^{t-\Delta t} - F_{h,k-\frac{1}{2}}^{t-\Delta t}\right)$$
(8.113)

となる.

これらをまとめると、惑星表面におけるフラックスをバルク法で評価する場合には、

$$\boldsymbol{B}_a \boldsymbol{x}_a = \boldsymbol{G}_a \tag{8.114}$$

$$\boldsymbol{x}_{a} = (T_{s}^{t+\Delta t} - T_{s}^{t-\Delta t}, T_{1}^{t+\Delta t} - T_{1}^{t-\Delta t}, T_{2}^{t+\Delta t} - T_{2}^{t-\Delta t}, ..., T_{k_{max}}^{t+\Delta t} - T_{k_{max}}^{t-\Delta t})$$

$$\mathbf{G}_{a} = (g_{a,1}, g_{a,2}, \dots, g_{a,k_{max}}), \tag{8.110}$$

$$g_{a,k} = -\left(F_{a,k+\frac{1}{2}}^{t-\Delta t} - F_{a,k-\frac{1}{2}}^{t-\Delta t}\right) \tag{8.117}$$

と書くことができる. ここで,
$$2 \le k \le k_{max} - 1$$
 のとき,

$$b_{a,k,k-1} = -C_p \frac{P_{k-\frac{1}{2}}}{P_{k-1}} (TC)_{h,k-\frac{1}{2}}$$
(8.118)

$$b_{a,k,k} = -C_p \frac{1}{2\Delta t} \frac{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}{g} + C_p \frac{P_{k-\frac{1}{2}}}{P_k} (TC)_{h,k-\frac{1}{2}} + C_p \frac{P_{k+\frac{1}{2}}}{P_k} (TC)_h (\$+\frac{1}{2})$$

$$b_{a,k,k+1} = -C_p \frac{P_{k+\frac{1}{2}}}{P_{k+1}} (TC)_{h,k+\frac{1}{2}}$$
(8.120)

であり, k = 1 のとき,

$$b_{a,k,k-1} = -C_p(TC)_{h,k-\frac{1}{2}}$$
(8.121)

$$b_{a,k,k} = -C_p \frac{1}{2\Delta t} \frac{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}{g} + C_p \frac{P_{k+\frac{1}{2}}}{P_k} (TC)_{h,k+\frac{1}{2}} + C_p \frac{P_{k-\frac{1}{2}}}{P_k} (TC)_{h,k+\frac{1}{2}} + C_p$$

$$b_{a,k,k+1} = -C_p \frac{P_{k+\frac{1}{2}}}{P_{k+1}} (TC)_{h,k+\frac{1}{2}}$$
(8.123)

であり, $k = k_{max}$ のとき,

$$b_{a,k,k-1} = -C_p \frac{P_{k-\frac{1}{2}}}{P_{k-1}} (TC)_{h,k-\frac{1}{2}}$$
(8.124)

$$b_{a,k,k} = -C_p \frac{1}{2\Delta t} \frac{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}{g} + C_p \frac{P_{k-\frac{1}{2}}}{P_k} (TC)_{h,k-\frac{1}{2}}$$
(8.125)

である.

ここで、*B_a*は *k_{max}* 行 *k_{max}* + 1 列の行列であり、この式だけでは未知数が方程式 数よりも多いために閉じない. 方程式を閉じるために、以下に述べる惑星表面での 熱収支式や地下の熱収支式、もしくは水蒸気の式を用いる.

また, 惑星表面におけるフラックスに一定値を与える場合には, 同じように式を変形して整理すると, k = 1 のとき,

$$b_{a,k,k} = -C_p \frac{1}{2\Delta t} \frac{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}{g} + C_p \frac{P_{k+\frac{1}{2}}}{P_k} (TC)_{h,k+\frac{1}{2}}$$
(8.126)

$$b_{a,k,k+1} = -C_p \frac{P_{k+\frac{1}{2}}}{P_{k+1}} (TC)_{h,k+\frac{1}{2}}$$
(8.127)

となる. k > 1 の場合には … と同様である. この場合には, B_a は k_{max} 行 k_{max} 列の行列であり, 未知数が方程式数と等しいため, この式のみで解くことができる.

8.2.5 水蒸気 (物質) 拡散の差分方程式の整理

ここでは、水蒸気の鉛直拡散の式の離散化方程式を離散化する.

… で述べたように,水蒸気の鉛直拡散は,用いる惑星表面の水蒸気フラックスの時 刻によって 2 通りの離散化方法を用いる.

惑星表面の水蒸気フラックスとして $t + \Delta t$ の時刻の値を用いる場合, 水蒸気の鉛

直拡散の式 … を整理すると, $2 \le k \le k_{max} - 1$ のとき,

$$-(TC)_{q,k-\frac{1}{2}} \left(q_{k-1}^{t+\Delta t} - q_{k-1}^{t-\Delta t} \right) + \left(-\frac{1}{2\Delta t} \frac{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}{g} + (TC)_{q,k+\frac{1}{2}} + (TC)_{q,k-\frac{1}{2}} \right) \left(q_{k}^{t+\Delta t} - q_{k}^{t-\Delta t} \right) - (TC)_{q,k+\frac{1}{2}} \left(q_{k+1}^{t+\Delta t} - q_{k+1}^{t-\Delta t} \right) = - \left(F_{q,k+\frac{1}{2}}^{t-\Delta t} - F_{q,k-\frac{1}{2}}^{t-\Delta t} \right)$$
(8.128)

 $\boldsymbol{k} = 1 \ \boldsymbol{0} \boldsymbol{k} \boldsymbol{\epsilon},$

$$-\epsilon (TC)_{q,k-\frac{1}{2}} \frac{\partial q_s^*}{\partial T_s} \left(T_s^{t+\Delta t} - T_s^{t-\Delta t} \right) + \left(-\frac{1}{2\Delta t} \frac{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}{g} + (TC)_{q,k+\frac{1}{2}} + \epsilon (TC)_{q,k-\frac{1}{2}} \right) \left(q_k^{t+\Delta t} - q_k^{t-\Delta t} \right) - (TC)_{q,k+\frac{1}{2}} \left(q_{k+1}^{t+\Delta t} - q_{k+1}^{t-\Delta t} \right) = - \left(F_{q,k+\frac{1}{2}}^{t-\Delta t} - F_{q,k-\frac{1}{2}}^{t-\Delta t} \right)$$
(8.130)

となり, $k = k_{max}$ のとき,

$$-(TC)_{q,k-\frac{1}{2}} \left(q_{k-1}^{t+\Delta t} - q_{k-1}^{t-\Delta t} \right) \\ + \left(-\frac{1}{2\Delta t} \frac{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}{g} + (TC)_{q,k-\frac{1}{2}} \right) \left(q_{k}^{t+\Delta t} - q_{k}^{t-\Delta t} \right)$$

$$(8.131)$$

$$= -\left(F_{q,k+\frac{1}{2}}^{t-\Delta t} - F_{q,k-\frac{1}{2}}^{t-\Delta t}\right)$$
(8.132)

となる.

これらをまとめると,

$$\boldsymbol{C}\boldsymbol{x}_q = \boldsymbol{G}_q \tag{8.133}$$

と書くことができる. ここで,

$$\boldsymbol{x}_{q} = (T_{s}^{t+\Delta t} - T_{s}^{t-\Delta t}, q_{1}^{t+\Delta t} - q_{1}^{t-\Delta t}, q_{2}^{t+\Delta t} - q_{2}^{t-\Delta t}, ..., q_{k_{max}}^{t+\Delta t} - q_{k_{max}}^{t-\Delta t})(8.134)$$
$$\boldsymbol{G}_{q} = (g_{q,1}, g_{q,2}, ..., g_{q,k_{max}}), \qquad (8.135)$$

$$g_{q,k} = -\left(F_{q,k+\frac{1}{2}}^{t-\Delta t} - F_{q,k-\frac{1}{2}}^{t-\Delta t}\right)$$
(8.136)

であり, $2 \le k \le k_{max} - 1$ のとき,

$$c_{k,k-1} = -(TC)_{q,k-\frac{1}{2}}$$
(8.137)

$$c_{k,k} = -\frac{1}{2\Delta t} \frac{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}{g} + (TC)_{q,k+\frac{1}{2}} + (TC)_{q,k-\frac{1}{2}}$$
(8.138)

$$c_{k,k+1} = -(TC)_{q,k+\frac{1}{2}} \tag{8.139}$$

k=1 obs,

$$c_{k,k-1} = -\epsilon (TC)_{q,k-\frac{1}{2}} \frac{\partial q_s^*}{\partial T_s}$$
(8.140)

$$c_{k,k} = -\frac{1}{2\Delta t} \frac{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}{q} + (TC)_{q,k+\frac{1}{2}} + \epsilon(TC)_{q,k-\frac{1}{2}}$$
(8.141)

$$c_{k,k+1} = -(TC)_{q,k+\frac{1}{2}}$$
(8.142)

 $k = k_{max}$ のとき

$$c_{k,k-1} = -(TC)_{q,k-\frac{1}{2}} \tag{8.143}$$

$$c_{k,k} = -\frac{1}{2\Delta t} \frac{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}{g} + (TC)_{q,k-\frac{1}{2}}$$
(8.144)

である.

ここで、*C* は *k_{max}* 行 *k_{max}* + 1 列の行列であり、この式だけでは未知数が方程式数よりも多いために閉じない. 方程式を閉じるために、熱の鉛直拡散の式や惑星表面での熱収支式や地下の熱収支式を同時に解く.

なお,惑星表面フラックスとして $t - \Delta t$ の時刻の値を用いる場合には,同じよう に式を変形して整理すると, k = 1 のとき,

$$c_{k,k-1} = 0 (8.145)$$

$$c_{k,k} = -\frac{1}{2\Delta t} \frac{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}{g} + (TC)_{q,k+\frac{1}{2}}$$
(8.146)

$$c_{k,k+1} = -(TC)_{q,k+\frac{1}{2}} \tag{8.147}$$

となる. $k \ge 2$ においては … と同様である. この場合には, C は k_{max} 行 k_{max} 列 の行列であり, この式だけで閉じる.

なお,惑星表面フラックスとして一定値を用いる場合にも同様の方法で解くことが できる.

8.3 参考文献

- Louis, J-F., M. Tiedtke, and J-F. Geleyn, 1982: A short history of the PBL parameterization at ECMWF, Workshop on Planetary Boundary Layer Parameterization, 59-80, ECMWF, Reading, U.K..
- Mellor, G. L., and T. Yamada, 1974: A hierarchy of turbulence closure models for planetary boundary layers, J. Atmos. Sci., **31**, 1791–1806.

Mellor, G. L., and T. Yamada, 1982: Development of a turbulent closure model for geophysical fluid problems, *Rev. Geophys. Space Phys.*, 20, 851–875.

第9章 惑星表面・地下の熱収支

9.1 数理表現

ここでは、惑星表面・地下の熱収支について述べる.

惑星要面 1 層モデル 9.1.1

惑星表面に1層の板があるモデルを考える. このモデルは slab ocean モデルと等 価である.

この1層の板の熱容量が有限の時,熱収支は下のように表現できる.

$$C_s \frac{\partial T_s}{\partial t} = -F_{SR} - F_{LR} - F_{h,\frac{1}{2}} - LF_{q,\frac{1}{2}} + F_g.$$
(9.1)

ここで C_s は熱容量である.

一方,熱容量が無限大のときは下のように表現できる.

$$\frac{\partial T_s}{\partial t} = 0. \tag{9.2}$$

このときは、惑星表面温度を固定することと等価であり、下のように書くことがで きる.

$$T_s = \text{Const.}$$
 (9.3)

9.1.2 土壌熱拡散モデル

地表面のモデルとして、土壌中の熱伝導を考慮したモデルを考える.土壌温度の熱 伝導方程式と、その境界条件としての地表面の熱収支は

$$C_g \frac{\partial T_g}{\partial t} = -\frac{\partial F_{g,h}}{\partial z} \tag{9.4}$$

$$F_{g,h} = F_{SR} + F_{LR} + F_h + LF_q \text{ for } z = 0$$
 (9.5)

$$F_{g,h} = -\kappa \frac{\partial T_g}{\partial z} \quad \text{for } z < 0$$

$$(9.6)$$

となる. ここで C_g は単位体積当たりの土壌比熱であり, κ 土壌の熱拡散係数である.

融雪に伴う熱収支の修正

惑星表面に積雪があり,かつ惑星表面温度が凝結温度を上回る時には,融雪が起こる.この時,積雪が残っている限り,惑星表面温度は凝結温度を超えることはない.

この時の惑星表面の熱収支は、

$$F_g = F_s + F_L + F_c + LF_q + F_{SM}$$
 (9.7)

$$= 0 \tag{9.8}$$

となる. ここで, F_{SM} は融雪による熱フラックスである.

9.1.3 海氷 1 層熱収支モデル

海氷が存在する場合のモデルとして、1層の海氷のモデルを考える.海氷面上の熱 収支は、

$$C_{i}\frac{\partial T_{s}}{\partial t} = -F_{SR} - F_{LR} - F_{h,\frac{1}{2}} - LF_{q,\frac{1}{2}} + F_{g}.$$
(9.9)

となる. ここで, *C_i* は海氷の単位面積当たりの熱容量, ...

9.2 離散表現

ここでは、惑星表面・地下の熱収支の離散化について述べる.

surface/energybudget.tex(surface/energybudget-disc.tex) 2011/02/21(地球流体電脳倶楽部)

9.2.1 惑星表面 1 層モデル

惑星表面に1層の板があるモデルにおいて,熱容量が有限の場合の熱収支の式… を整理すると,

$$-L\epsilon(TC)_{q,\frac{1}{2}} \left(q_{1}^{t+\Delta t} - q_{1}^{t-\Delta t} \right) + \left(\frac{C_{s}}{2\Delta t} + C_{p}(TC)_{h,\frac{1}{2}} + \frac{\partial F_{LR}}{\partial T_{s}} + L\epsilon(TC)_{q,\frac{1}{2}} \frac{\partial q_{s}^{*}}{\partial T} \right) \left(T_{s}^{t+\Delta t} - T_{s}^{t-\Delta t} \right) + \left(-C_{p} \frac{P_{\frac{1}{2}}}{P_{1}} (TC)_{h,\frac{1}{2}} + \frac{\partial F_{LR}}{\partial T_{1}} \right) \left(T_{1}^{t+\Delta t} - T_{1}^{t-\Delta t} \right) = -F_{SR}^{t+\Delta t} - F_{LR} \left(T_{s}^{t-\Delta t}, T_{1}^{t-\Delta t} \right) - F_{h,\frac{1}{2}}^{t-\Delta t} - LF_{q,\frac{1}{2}}^{t-\Delta t} + F_{g}^{t+\Delta t}$$
(9.10)

となる. これらを、今後の式の整理の都合から、k = 0 として下の様に書きなおすことにする.

$$b_{s,k,k-1} \left(q_1^{t+\Delta t} - q_1^{t-\Delta t} \right) + b_{s,k,k} \left(T_s^{t+\Delta t} - T_s^{t-\Delta t} \right) + b_{s,k,k+1} \left(T_1^{t+\Delta t} - T_1^{t-\Delta t} \right) = g_{s,k}$$
(9.11)

ここで,

$$b_{s,k,k-1} = -L\epsilon(TC)_{q,\frac{1}{2}}$$
(9.12)

$$b_{s,k,k} = \frac{C_s}{2\Delta t} + C_p (TC)_{h,\frac{1}{2}} + L\epsilon (TC)_{q,\frac{1}{2}} \frac{\partial q_s^*}{\partial T} + \frac{\partial F_{LR}}{\partial T_s}$$
(9.13)

$$b_{s,k,k+1} = -C_p \frac{P_{\frac{1}{2}}}{P_1} (TC)_{h,\frac{1}{2}} + \frac{\partial F_{LR}}{\partial T_1}$$
(9.14)

$$g_{s,k} = -F_{SR}^{t+\Delta t} - F_{LR} \left(T_s^{t-\Delta t}, T_1^{t-\Delta t} \right) - F_{h,\frac{1}{2}}^{t-\Delta t} - LF_{q,\frac{1}{2}}^{t-\Delta t} + F_g^{t+\Delta t} \left(9.15 \right)$$

である¹.

一方,層の熱容量が無限大(もしくは惑星表面温度が固定)の場合には、同様にして

$$b_{s,k,k-1} = 0 (9.16)$$

$$b_{s,k,k} = 1$$
 (9.17)

$$b_{s,k,k+1} = 0 (9.18)$$

$$g_{s,k} = 0.$$
 (9.19)

となる.

¹なお, バケツモデルを使う時には (表現が不正確だが), $b_{s,k,k-1} = 0 \ge b, b_{s,k,k}$ の $L\epsilon(TC)_{q,\frac{1}{2}} \frac{\partial q_s^*}{\partial T}$ を削除すれば良い.

9.2.2 地表面における熱収支と地下における熱伝導方程式

土壌の熱伝導方程式は下のように離散化される.

$$C_g \frac{T_{g,k}^{t+\Delta t} - T_{g,k}^{t-\Delta t}}{2\Delta t} = -\frac{F_{g,h,k+\frac{1}{2}}^{t+\Delta t} - F_{g,h,k-\frac{1}{2}}^{t+\Delta t}}{z_{k+\frac{1}{2}} - z_{k-\frac{1}{2}}}$$
(9.20)

ここで、 $1 \le k \le k_{s,max} - 1$ のとき、

$$F_{g,h,k+\frac{1}{2}} = -(TC)_{g,k+\frac{1}{2}} (T_{g,k+1} - T_{g,k}), \qquad (9.21)$$

$$(TC)_{g,k+\frac{1}{2}} = \kappa_{g,k+\frac{1}{2}} \frac{1}{z_{k+1} - z_k}$$
(9.22)

であり、境界条件は $(k = 1 \text{ と b } \tau), ^2$

$$F_{g,h,k-\frac{1}{2}} = F_{SR} + F_{LR} + F_{h,\frac{1}{2}} + LF_{q,\frac{1}{2}}$$
(9.23)

であり, $(k = k_{s,max}$ として,)

$$F_{g,h,k+\frac{1}{2}} = 0 (9.24)$$

である.

しかし、このままでは方程式の数よりも未知数 (大気温度 $T(k_{max} \ @)$ 、地表面温度 $T_s(1 \ @)$ 、土壌温度 $T_g(k_{s,max} \ @)$)の数の方が多いために解けない. そこで以下の 式を導入する.

$$F_{g,h,\frac{1}{2}} = -(TC)_{g,\frac{1}{2}} (T_{g,1} - T_s)$$
(9.25)

$$(TC)_{g,\frac{1}{2}} = \kappa_{g,\frac{1}{2}} \frac{1}{z_1 - 0}$$
(9.26)

今後, (9.25) を上部境界条件と考えることにし, ... を k = 0 における式と考える ことにする.

土壌の熱拡散方程式を変形して整理すると、 $2 \le k \le k_{s,max} - 1$ のとき、

$$-(TC)_{g,k-\frac{1}{2}} \left(T_{g,k-1}^{t+\Delta t} - T_{g,k-1}^{t-\Delta t}\right) \\ + \left\{\frac{1}{2\Delta t}C_{g,k}, \left(z_{k+\frac{1}{2}} - z_{k-\frac{1}{2}}\right) + (TC)_{g,k-\frac{1}{2}} + (TC)_{g,k+\frac{1}{2}}\right\} \left(T_{g,k}^{t+\Delta t} - T_{g,k}^{t-\Delta t}\right) \\ -(TC)_{g,k+\frac{1}{2}} \left(T_{g,k+1}^{t+\Delta t} - T_{g,k+1}^{t-\Delta t}\right) \\ = -\left(F_{g,h,k+\frac{1}{2}}^{t-\Delta t} - F_{g,h,k-\frac{1}{2}}^{t-\Delta t}\right)$$
(9.27)
²こういう書き方しないよな.

となり, $k = k_{s,max}$ のとき,

$$-(TC)_{g,k-\frac{1}{2}} \left(T_{g,k-1}^{t+\Delta t} - T_{g,k-1}^{t-\Delta t}\right) + \left\{\frac{1}{2\Delta t}C_{g,k}, \left(z_{k+\frac{1}{2}} - z_{k-\frac{1}{2}}\right) + (TC)_{g,k-\frac{1}{2}}\right\} \left(T_{g,k}^{t+\Delta t} - T_{g,k}^{t-\Delta t}\right) = -\left(F_{g,h,k+\frac{1}{2}}^{t-\Delta t} - F_{g,h,k-\frac{1}{2}}^{t-\Delta t}\right)$$
(9.28)

となる.

k = 1 のときは, … において … の式を用いて変形すると, k = 2 とした場合に

$$T_{g,k-1} = T_s \tag{9.29}$$

とした式と同じ式となる.

k = 0のとき、この式は、式の形としては、地表面に熱容量ゼロの仮想的な層が存在すると仮定することと等価である.³そこで、ここではこの考えを拡張し、一様な温度 T_s を持ち、単位面積当たりの熱容量が C_s である層が地表面直下にあると考えることにする.この層の熱収支の式は … の式を拡張し、以下のように書くことができる.

$$C_s \frac{\partial T_s}{\partial t} = -F_{SR} - F_{LR} - F_{h,\frac{1}{2}} - LF_{q,\frac{1}{2}} + F_{g,h,\frac{1}{2}}$$
(9.30)

 $C_s = 0$ の場合には、上に述べた…の式を適応した場合に対応する⁴.

この式を時間に関して離散化すると,

$$C_s \frac{T_s^{t+\Delta t} - T_s^{t-\Delta t}}{2\Delta t} = -F_{SR} - F_{LR} - F_{h,\frac{1}{2}} - LF_{q,\frac{1}{2}} + F_{g,h,\frac{1}{2}}$$
(9.31)

となる.この式を整理すると、

$$(TC)_{g,\frac{1}{2}} \left(T_{g,1}^{t+\Delta t} - T_{g,1}^{t-\Delta t} \right) + \left(\frac{C_s}{2\Delta t} - (TC)_{g,\frac{1}{2}} + C_p (TC)_{h,\frac{1}{2}} + \frac{\partial F_{LR}}{\partial T_s} \right) \left(T_s^{t+\Delta t} - T_s^{t-\Delta t} \right) + \left(-C_p \frac{P_{\frac{1}{2}}}{P_1} (TC)_{h,\frac{1}{2}} + \frac{\partial F_{LR}}{\partial T_1} \right) \left(T_1^{t+\Delta t} - T_1^{t-\Delta t} \right) = -F_{SR}^{t+\Delta t} - F_{LR} \left(T_s^{t-\Delta t}, T_1^{t-\Delta t} \right) - F_{h,\frac{1}{2}}^{t-\Delta t} - LF_{g,\frac{1}{2}}^{t-\Delta t} + F_{g,h,\frac{1}{2}}^{t-\Delta t}$$
(9.32)

³これはここに書くもんじゃないな.

⁴このように定式化しておくと、slub ocean の条件に適応できる. 例えば、 $C_s \neq 0, F_{g,h,k-\frac{1}{2}} = 0, (TC)_{g,\frac{1}{2}} = 0$ の場合には、slub ocean に対応する. しかし、これは単に計算上 / モデル開発上の工夫であるが、実際にどの程度役に立つかは未知数.

となる. ただし、ここでは三重対角行列にするために、 潜熱フラックスは $t - \Delta t$ の 時刻のものを用いる.

これらをまとめると、

$$\boldsymbol{B}_{g}\boldsymbol{x}_{g} = \boldsymbol{G}_{g} \tag{9.33}$$

と書くことができる. ここで,

$$\boldsymbol{x}_{g} = \left(T_{1}^{t+\Delta t} - T_{1}^{t-\Delta t}, T_{s}^{t+\Delta t} - T_{s}^{t-\Delta t}, \\ T_{g,1}^{t+\Delta t} - T_{g,1}^{t-\Delta t}, T_{g,2}^{t+\Delta t} - T_{g,2}^{t-\Delta t}, ..., T_{g,k_{s,max}}^{t+\Delta t} - T_{g,k_{s,max}}^{t-\Delta t}\right), \quad (9.34)$$

$$G_{g} = (g_{g,0}, g_{g,1}, g_{g,2}, \dots, g_{g,k_{s,max}}),$$
(9.35)

$$g_{g,0} = -F_{SR}^{t+\Delta t} - F_{LR} \left(T_s^{t-\Delta t}, T_1^{t-\Delta t} \right) - F_{h,\frac{1}{2}}^{t-\Delta t}$$

$$I = E^{t-\Delta t} + E^{t-\Delta t}$$
(0.26)

$$g_{g,k\geq 1} = -\left(F_{g,k+\frac{1}{2}}^{t-\Delta t} - F_{g,k-\frac{1}{2}}^{t-\Delta t}\right)$$
(9.30)
(9.37)

ここで、 $1 \le k \le k_{s,max} - 1$ のとき、

$$b_{g,k,k-1} = -(TC)_{g,k-\frac{1}{2}}$$
(9.38)

$$b_{g,k,k} = \frac{1}{2\Delta t} C_{g,k}, \left(z_{k+\frac{1}{2}} - z_{k-\frac{1}{2}} \right) + (TC)_{g,k-\frac{1}{2}} + (TC)_{g,k+\frac{1}{2}}$$
(9.39)

$$b_{g,k,k+1} = -(TC)_{g,k+\frac{1}{2}} \tag{9.40}$$

であり, k = 0 のとき,

$$b_{g,k,k-1} = -C_p \frac{P_{\frac{1}{2}}}{P_1} (TC)_{h,\frac{1}{2}} + \frac{\partial F_{LR}}{\partial T_1}$$
(9.41)

$$b_{g,k,k} = \frac{C_s}{2\Delta t} - (TC)_{g,\frac{1}{2}} + C_p (TC)_{h,\frac{1}{2}} + \frac{\partial F_{LR}}{\partial T_s}$$
(9.42)

$$b_{g,k,k+1} = (TC)_{g,\frac{1}{2}} \tag{9.43}$$

であり 5 , $k = k_{s,max}$ のとき,

$$b_{g,k,k-1} = -(TC)_{g,k-\frac{1}{2}} \tag{9.44}$$

$$b_{g,k,k} = \frac{1}{2\Delta t} C_{g,k}, \left(z_{k+\frac{1}{2}} - z_{k-\frac{1}{2}} \right) + (TC)_{g,k-\frac{1}{2}}$$
(9.45)

である.

 $\overline{ 5}$ ここでは, T_g (土壌温度), T_s (地表面温度), T (大気温度)の順番に書いているが, 2010/02/20 時点のコードでは逆の順番になっている.

surface/energybudget.tex(surface/energybudget-disc.tex) 2011/02/21(地球流体電脳倶楽部)

ただし、 B_g は $k_{s,max}$ + 1 行 $k_{s,max}$ + 2 列の行列であり、この式だけでは未知数が 方程式数よりも多いために閉じない. 方程式を閉じるために、熱の鉛直拡散の式と 同時に解く.

なお,層の熱容量が無限大(もしくは惑星表面温度が固定)の場合には,

$$b_{q,k,k-1} = 0 (9.46)$$

$$b_{g,k,k} = 1 \tag{9.47}$$

$$b_{g,k,k+1} = 0 (9.48)$$

$$g_{q,k} = 0.$$
 (9.49)

である.

9.2.3 海氷面上の熱収支

海氷面上の熱収支式 … を離散化する.

海氷面上の,海氷に伝わる熱フラックスを

$$F_{g,\frac{1}{2}} = -\frac{\kappa_i}{h_i} \left(T_s - T_0\right) \tag{9.50}$$

と書くことにする. ここで, h_i は海氷の厚さであり, T_0 は海氷下の海水温である. このとき, 海氷面上の熱収支式 … は下のように離散化される.

$$\frac{C_i}{2\Delta t} \left(T_s^{t+\Delta t} - T_s^{t-\Delta t} \right)
= -F_{SR}^{t+\Delta t} - F_{LR}^{t+\Delta t} - F_{h,\frac{1}{2}}^{t+\Delta t} - LF_{q,\frac{1}{2}}^{t-\Delta t} + F_{g,\frac{1}{2}}^{t+\Delta t}$$
(9.51)

ただし、潜熱フラックスは $t - \Delta t$ の時刻のものを用いる⁶. これを整理すると、

$$\left(\frac{C_i}{2\Delta t} + C_p (TC)_{h,\frac{1}{2}} + \frac{\partial F_{LR}}{\partial T_s} + \frac{\kappa_i}{h_i}\right) \left(T_s^{t+\Delta t} - T_s^{t-\Delta t}\right) \\
+ \left(-C_p \frac{P_1}{P_1} (TC)_{h,\frac{1}{2}} + \frac{\partial F_{LR}}{\partial T_1}\right) \left(T_1^{t+\Delta t} - T_1^{t-\Delta t}\right) \\
= -F_{SR}^{t+\Delta t} - F_{LR} \left(T_s^{t-\Delta t}, T_1^{t-\Delta t}\right) - F_{h,\frac{1}{2}}^{t-\Delta t} - LF_{q,\frac{1}{2}}^{t-\Delta t} + F_{g,\frac{1}{2}}^{t-\Delta t} \quad (9.52)$$

⁶これは、整理した結果得られる行列を三重対角行列にするためである.これは、水蒸気の式に おいて惑星表面の水蒸気フラックスの値として $t - \Delta t$ の時刻の値を使うことにしたことに起因し ており、その場合には、ここでも $t - \Delta t$ の時刻のフラックスを使わなければ水の質量が保存されな い. もちろん、他のやり方はあり得るだろう.

となる.

以上を整理し、今後の式の整理を念頭において、k = 0として下の形に書くことに する.

$$b_{i,k,k-1} \left(T_s^{t+\Delta t} - T_s^{t-\Delta t} \right) + b_{i,k,k} \left(T_1^{t+\Delta t} - T_1^{t-\Delta t} \right) = g_{i,k}$$
(9.53)

ここで,

$$b_{i,k,k} = \frac{C_i}{2\Delta t} + C_p (TC)_{h,\frac{1}{2}} + \frac{\partial F_{LR}}{\partial T_s} + \frac{\kappa_i}{h_i}$$
(9.54)

$$b_{i,k,k+1} = -C_p \frac{P_{\frac{1}{2}}}{P_1} (TC)_{h,\frac{1}{2}} + \frac{\partial F_{LR}}{\partial T_1}$$
(9.55)

$$g_{i,k} = -F_{SR}^{t+\Delta t} - F_{LR} \left(T_s^{t-\Delta t}, T_1^{t-\Delta t} \right) - F_{h,\frac{1}{2}}^{t-\Delta t} - LF_{q,\frac{1}{2}}^{t-\Delta t} + F_{g,\frac{1}{2}}^{t-\Delta t}$$
(9.56)

である.

9.2.4 融雪による熱収支の修正

ここはまだ整理していない.

融雪時の地表面の熱収支式 ... を離散化すると,

$$F_g^{n+1} = -\kappa \frac{T_s^{n+1} - T_{g,1}^{n+1}}{z_{\frac{1}{2}} - z_1}$$
(9.57)

$$= F_s^{n+1} + F_L^{n+1} + F_c^{n+1} + LF_q^{n+1} + F_{SM}^{n+1}$$
(9.58)

$$C_{g,1}\frac{T_{g,1}^{n+1} - T_{g,1}^{n-1}}{2\Delta t} = -\frac{1}{z_{\frac{1}{2}} - z_{\frac{3}{2}}} \left\{ F_s^{n+1} + F_L^{n+1} + F_c^{n+1} + LF_q^{n+1} + F_{SM}^{n+1} - F_g^{n+1} - F_g^{n+1} + F_L^{n+1} +$$

となる. ここで, $F_g^{n+1}, F_s^{n+1}, F_L^{n+1}, F_c^{n+1}, LF_q^{n+1}, F_{SM}^{n+1}$ はそれぞれ, 地下への熱伝 導フラックス, 短波放射フラックス, 長波放射フラックス, 顕熱フラックス, 潜熱フ ラックス, 融雪による熱フラックスである.

 $F_s^{n+1}, F_c^{n+1}, LF_q^{n+1}, F_g^{n+1}$ は、前節までの方法で連立一次方程式を解くことで得られた値を用いることとし、地表面温度 $T_s^{n+1}, T_{g,1}^{n+1}$ を介して F_L^{n+1} を調節することで融雪量、すなわち F_{SM}^{n+1} を求める.ここで、

$$F_L^{n+1} = F_L^{n-1} + \frac{\partial F_L}{\partial T_1} \left(T_1^{n+1} - T_1^{n-1} \right) + \frac{\partial F_L}{\partial T_s} \left(T_s^{n+1} - T_s^{n-1} \right)$$
(9.60)
であるから, (...), (...) より,

$$-\kappa \frac{T_s^{n+1} - T_{g,1}^{n+1}}{z_{\frac{1}{2}} - z_1} = F_s^{n+1} + F_L^{n-1} + \frac{\partial F_L}{\partial T_1} \left(T_1^{n+1} - T_1^{n-1} \right) + \frac{\partial F_L}{\partial T_s} \left(T_s^{n+1} - T_s^{n-1} \right) + F_c^{n+1} + LF_q^{n+1} + F_{SM}^{n+1},$$
(9.61)

$$C_{g,1} \frac{T_{g,1}^{n+1} - T_{g,1}^{n-1}}{2\Delta t} = -\frac{1}{z_{\frac{1}{2}} - z_{\frac{3}{2}}} \bigg\{ F_s^{n+1} + F_L^{n-1} + \frac{\partial F_L}{\partial T_1} \left(T_1^{n+1} - T_1^{n-1} \right) + \frac{\partial F_L}{\partial T_s} \left(T_s^{n+1} - T_s^{n-1} \right) + F_c^{n+1} + LF_q^{n+1} + F_{SM}^{n+1} - F_g^{n+1} \bigg\},$$

$$(9.62)$$

となる.

これら 2 つの方程式に対して, 未知数は $T_s^{n+1}, T_{g,1}^{n+1}, F_{SM}^{n+1}$ の 3 つである. そこでまず, 積雪すべてが解けた場合を想定し, $T_s^{n+1}, T_{g,1}^{n+1}$ を求めることにする. それによって得られた $T_s^{n+1}, T_{g,1}^{n+1}$ が不適切であった場合 $(T_{g,1}^{n+1} < T_{cond})$ には, $T_{g,1}^{n+1} = T_{cond}$ として, T_s^{n+1}, F_{SM}^{n+1} を求める.

積雪がすべて解ける場合

このとき, $F_{SM}^{n+1} = \frac{M_{\text{snow}}}{2\Delta t}$ であり, T_s^{n+1} , $T_{g,1}^{n+1}$ が未知数である. ここで, M_{snow} は積雪量である.

(...) より,

$$-\frac{\kappa}{z_{\frac{1}{2}} - z_{1}} T_{s}^{n+1} + \frac{\kappa}{z_{\frac{1}{2}} - z_{1}} T_{g,1}^{n+1} = F_{s}^{n+1} + F_{L}^{n-1} + \frac{\partial F_{L}}{\partial T_{1}} \left(T_{1}^{n+1} - T_{1}^{n-1} \right) + \frac{\partial F_{L}}{\partial T_{s}} T_{s}^{n+1} - \frac{\partial F_{L}}{\partial T_{s}} \left(\mathcal{F}_{s}^{n+1} + F_{c}^{n+1} + LF_{q}^{n+1} + F_{SM}^{n+1} \right)$$

$$+ F_{c}^{n+1} + LF_{q}^{n+1} + F_{SM}^{n+1}, \qquad (9.64)$$

$$\frac{\kappa}{z_{\frac{1}{2}} - z_1} T_{g,1}^{n+1} = F_s^{n+1} + F_L^{n-1} + \frac{\partial F_L}{\partial T_1} \left(T_1^{n+1} - T_1^{n-1} \right) + \frac{\partial F_L}{\partial T_s} T_s^{n+1} - \frac{\partial F_L}{\partial T_s} \mathcal{F}_s^{n+1} - \frac{\partial F_L}{\partial T_s}$$

$$+F_c^{n+1} + LF_q^{n+1} + F_{SM}^{n+1} \tag{9.66}$$

$$+\frac{\kappa}{z_{\frac{1}{2}}-z_{1}}T_{s}^{n+1},$$
(9.67)

$$T_{g,1}^{n+1} = \left(1 + \frac{z_{\frac{1}{2}} - z_1}{\kappa} \frac{\partial F_L}{\partial T_s}\right) T_s^{n+1}$$

$$(9.68)$$

$$+\frac{z_{\frac{1}{2}}-z_{1}}{\kappa}\left\{F_{s}^{n+1}+F_{L}^{n-1}+\frac{\partial F_{L}}{\partial T_{1}}\left(T_{1}^{n+1}-T_{1}^{n-1}\right)-\frac{\partial F_{L}}{\partial T_{s}}\mathbb{Q}^{n}_{s}^{n}_{s}^{0}\right\}$$

$$+F_{c}^{n+1} + LF_{q}^{n+1} + F_{SM}^{n+1} \bigg\}, \qquad (9.70)$$

$$T_{g,1}^{n+1} = \left(1 + \frac{z_{\frac{1}{2}} - z_1}{\kappa} \frac{\partial F_L}{\partial T_s}\right) T_s^{n+1}$$
(9.71)

$$+\frac{z_{\frac{1}{2}}-z_{1}}{\kappa}\alpha\tag{9.72}$$

ここで,

$$\alpha = F_s^{n+1} + F_L^{n-1} + \frac{\partial F_L}{\partial T_1} \left(T_1^{n+1} - T_1^{n-1} \right) - \frac{\partial F_L}{\partial T_s} T_s^{n-1}$$
(9.73)

$$+F_c^{n+1} + LF_q^{n+1} + F_{SM}^{n+1} \tag{9.74}$$

である.(...)を(...)に代入すると、

$$\frac{C_{g,1}}{2\Delta t} \left\{ \left(1 + \frac{z_{\frac{1}{2}} - z_{1}}{\kappa} \frac{\partial F_{L}}{\partial T_{s}} \right) T_{s}^{n+1} + \frac{z_{\frac{1}{2}} - z_{1}}{\kappa} \alpha \right\} - \frac{C_{g,1}}{2\Delta t} T_{g,1}^{n-1} \\
= -\frac{1}{z_{\frac{1}{2}} - z_{\frac{3}{2}}} \left\{ F_{s}^{n+1} + F_{L}^{n-1} + \frac{\partial F_{L}}{\partial T_{1}} \left(T_{1}^{n+1} - T_{1}^{n-1} \right) + \frac{\partial F_{L}}{\partial T_{s}} \left(T_{s}^{n+1} - T_{s}^{n-1} \right) \\
+ F_{c}^{n+1} + LF_{q}^{n+1} + F_{SM}^{n+1} - F_{g}^{n+1} \right\},$$
(9.75)

$$= -\frac{1}{z_{\frac{1}{2}} - z_{\frac{3}{2}}} \left\{ F_s^{n+1} + F_L^{n-1} + \frac{\partial F_L}{\partial T_1} \left(T_1^{n+1} - T_1^{n-1} \right) + \frac{\partial F_L}{\partial T_s} T_s^{n+1} - \frac{\partial F_L}{\partial T_s} T_s^{n-1} \right\}$$

$$+F_{c}^{n+1} + LF_{q}^{n+1} + F_{SM}^{n+1} \bigg\}, (9.76)$$

$$+\frac{1}{z_{\frac{1}{2}}-z_{\frac{3}{2}}}F_{g}^{n+1},\tag{9.77}$$

$$= -\frac{1}{z_{\frac{1}{2}} - z_{\frac{3}{2}}} \frac{\partial F_L}{\partial T_s} T_s^{n+1}$$
(9.78)

$$-\frac{1}{z_{\frac{1}{2}} - z_{\frac{3}{2}}} \bigg\{ F_s^{n+1} + F_L^{n-1} + \frac{\partial F_L}{\partial T_1} \left(T_1^{n+1} - T_1^{n-1} \right) - \frac{\partial F_L}{\partial T_s} T_s^{n-1} + F_c^{n+1} + LF_q^{n+1} + F_{SM}^{n+1} \bigg\},$$
(9.79)

$$+\frac{1}{z_{\frac{1}{2}}-z_{\frac{3}{2}}}F_g^{n+1},\tag{9.80}$$

$$= -\frac{1}{z_{\frac{1}{2}} - z_{\frac{3}{2}}} \frac{\partial F_L}{\partial T_s} T_s^{n+1}$$
(9.81)

$$-\frac{1}{z_{\frac{1}{2}} - z_{\frac{3}{2}}}\alpha\tag{9.82}$$

$$+\frac{1}{z_{\frac{1}{2}}-z_{\frac{3}{2}}}F_{g}^{n+1},\tag{9.83}$$

$$\frac{C_{g,1}}{2\Delta t} \left(1 + \frac{z_{\frac{1}{2}} - z_{1}}{\kappa} \frac{\partial F_{L}}{\partial T_{s}} \right) T_{s}^{n+1} + \frac{C_{g,1}}{2\Delta t} \frac{z_{\frac{1}{2}} - z_{1}}{\kappa} \alpha - \frac{C_{g,1}}{2\Delta t} T_{g,1}^{n-1} \\
= -\frac{1}{z_{\frac{1}{2}} - z_{\frac{3}{2}}} \frac{\partial F_{L}}{\partial T_{s}} T_{s}^{n+1} - \frac{1}{z_{\frac{1}{2}} - z_{\frac{3}{2}}} \alpha + \frac{1}{z_{\frac{1}{2}} - z_{\frac{3}{2}}} F_{g}^{n+1}, \qquad (9.84) \\
\left\{ \frac{C_{g,1}}{2} \left(1 + \frac{z_{\frac{1}{2}} - z_{1}}{2} \frac{\partial F_{L}}{2\pi} \right) + \frac{1}{2\pi} \frac{\partial F_{L}}{2\pi} \right\} T_{s}^{n+1}$$

$$\left(\frac{2\Delta t}{2\Delta t}\left(1+\frac{1}{\kappa},\frac{1}{2},$$

積雪がすべて解けない場合

このとき,
$$T_{g,1}^{n+1} = T_{cond}$$
 であり, F_{SM} , T_s^{n+1} が未知数である.
(...) より,

$$F_{SM}^{n+1} = -\kappa \frac{T_s^{n+1} - T_{g,1}^{n+1}}{z_{\frac{1}{2}} - z_1} - F_s^{n+1} - F_L^{n-1} - \frac{\partial F_L}{\partial T_1} \left(T_1^{n+1} - T_1^{n-1} \right) - \frac{\partial F_L}{\partial T_s} \left(T_s^{n+1} - T_s^{n-1} \right) - \frac{\partial F_L}{\partial T_s} \left(T_s^{n+1} - T_s^{n-1} \right)$$

$$(9.87)$$

(…) に代入すると,

$$C_{g,1}\frac{T_{g,1}^{n+1} - T_{g,1}^{n-1}}{2\Delta t} = -\frac{1}{z_{\frac{1}{2}} - z_{\frac{3}{2}}} \left\{ F_s^{n+1} + F_L^{n-1} + \frac{\partial F_L}{\partial T_1} \left(T_1^{n+1} - T_1^{n-1} \right) + \frac{\partial F_L}{\partial T_s} \left(T_s^{n+1} - T_s^{n-1} \right) + F_c^{n+1} + LF_a^{n+1} \right\}$$

$$-\kappa \frac{T_s^{n+1} - T_{g,1}^{n+1}}{z_{\frac{1}{2}} - z_1} - F_s^{n+1} - F_L^{n-1} - \frac{\partial F_L}{\partial T_1} \left(T_1^{n+1} - T_1^{n-1} \right) - \frac{\partial F_L}{\partial T_s} \left(T_s^{n+1} - T_s^{n-1} \right) = \frac{\partial F_L}{\partial T_s} \left(T_s^{n+1} - T_s^{n-1} \right) = \frac{\partial F_L}{\partial T_s} \left(T_s^{n+1} - T_s^{n-1} \right) = \frac{\partial F_L}{\partial T_s} \left(T_s^{n+1} - T_s^{n-1} \right) = \frac{\partial F_L}{\partial T_s} \left(T_s^{n+1} - T_s^{n-1} \right) = \frac{\partial F_L}{\partial T_s} \left(T_s^{n+1} - T_s^{n-1} \right) = \frac{\partial F_L}{\partial T_s} \left(T_s^{n+1} - T_s^{n-1} \right) = \frac{\partial F_L}{\partial T_s} \left(T_s^{n+1} - T_s^{n-1} \right) = \frac{\partial F_L}{\partial T_s} \left(T_s^{n+1} - T_s^{n-1} \right) = \frac{\partial F_L}{\partial T_s} \left(T_s^{n+1} - T_s^{n-1} \right) = \frac{\partial F_L}{\partial T_s} \left(T_s^{n+1} - T_s^{n-1} \right) = \frac{\partial F_L}{\partial T_s} \left(T_s^{n+1} - T_s^{n-1} \right) = \frac{\partial F_L}{\partial T_s} \left(T_s^{n+1} - T_s^{n-1} \right) = \frac{\partial F_L}{\partial T_s} \left(T_s^{n+1} - T_s^{n-1} \right) = \frac{\partial F_L}{\partial T_s} \left(T_s^{n+1} - T_s^{n-1} \right) = \frac{\partial F_L}{\partial T_s} \left(T_s^{n+1} - T_s^{n-1} \right) = \frac{\partial F_L}{\partial T_s} \left(T_s^{n+1} - T_s^{n-1} \right) = \frac{\partial F_L}{\partial T_s} \left(T_s^{n+1} - T_s^{n-1} \right) = \frac{\partial F_L}{\partial T_s} \left(T_s^{n+1} - T_s^{n-1} \right) = \frac{\partial F_L}{\partial T_s} \left(T_s^{n+1} - T_s^{n-1} \right) = \frac{\partial F_L}{\partial T_s} \left(T_s^{n+1} - T_s^{n-1} \right) = \frac{\partial F_L}{\partial T_s} \left(T_s^{n+1} - T_s^{n-1} \right) = \frac{\partial F_L}{\partial T_s} \left(T_s^{n+1} - T_s^{n-1} \right) = \frac{\partial F_L}{\partial T_s} \left(T_s^{n+1} - T_s^{n-1} \right) = \frac{\partial F_L}{\partial T_s} \left(T_s^{n+1} - T_s^{n-1} \right) = \frac{\partial F_L}{\partial T_s} \left(T_s^{n+1} - T_s^{n-1} \right) = \frac{\partial F_L}{\partial T_s} \left(T_s^{n+1} - T_s^{n-1} \right) = \frac{\partial F_L}{\partial T_s} \left(T_s^{n+1} - T_s^{n-1} \right) = \frac{\partial F_L}{\partial T_s} \left(T_s^{n+1} - T_s^{n-1} \right) = \frac{\partial F_L}{\partial T_s} \left(T_s^{n+1} - T_s^{n-1} \right) = \frac{\partial F_L}{\partial T_s} \left(T_s^{n+1} - T_s^{n-1} \right) = \frac{\partial F_L}{\partial T_s} \left(T_s^{n+1} - T_s^{n-1} \right) = \frac{\partial F_L}{\partial T_s} \left(T_s^{n+1} - T_s^{n-1} \right) = \frac{\partial F_L}{\partial T_s} \left(T_s^{n+1} - T_s^{n-1} \right) = \frac{\partial F_L}{\partial T_s} \left(T_s^{n+1} - T_s^{n-1} \right) = \frac{\partial F_L}{\partial T_s} \left(T_s^{n+1} - T_s^{n-1} \right) = \frac{\partial F_L}{\partial T_s} \left(T_s^{n+1} - T_s^{n-1} \right) = \frac{\partial F_L}{\partial T_s} \left(T_s^{n+1} - T_s^{n-1} \right) = \frac{\partial F_L}{\partial T_s} \left(T_s^{n+1} - T_s^{n-1} \right) = \frac{\partial F_L}{\partial T_s} \left(T_s^{n+1} - T_s^{n-1} \right) = \frac{\partial F_L}{\partial T_s} \left(T_s^{n+1} - T_s^{n-1} \right) = \frac{\partial F_L}{\partial T_s} \left(T_s^{n+1} - T_s^$$

$$-F_{c}^{n+1} - LF_{q}^{n+1}$$
(9)

$$-F_g^{n+1} \bigg\}, \tag{9}$$

$$= -\frac{1}{z_{\frac{1}{2}} - z_{\frac{3}{2}}} \left\{ -\kappa \frac{T_s^{m+1} - T_{g,1}^{m+1}}{z_{\frac{1}{2}} - z_1} - F_g^{m+1} \right\}$$
(9)

$$= \frac{1}{z_{\frac{1}{2}} - z_{\frac{3}{2}}} \kappa \frac{T_s^{n+1} - T_{g,1}^{n+1}}{z_{\frac{1}{2}} - z_1} + \frac{1}{z_{\frac{1}{2}} - z_{\frac{3}{2}}} F_g^{n+1}$$
(9)

$$= \frac{1}{z_{\frac{1}{2}} - z_{\frac{3}{2}}} \frac{\kappa}{z_{\frac{1}{2}} - z_{1}} T_{s}^{n+1} - \frac{1}{z_{\frac{1}{2}} - z_{\frac{3}{2}}} \frac{\kappa}{z_{\frac{1}{2}} - z_{1}} T_{g,1}^{n+1} + \frac{1}{z_{\frac{1}{2}} - z_{\frac{3}{2}}} F_{g}^{n+1}$$
(9)

$$\frac{1}{z_{\frac{1}{2}} - z_{\frac{3}{2}}} \frac{\kappa}{z_{\frac{1}{2}} - z_{1}} T_{s}^{n+1} = C_{g,1} \frac{T_{g,1}^{n+1} - T_{g,1}^{n-1}}{2\Delta t} + \frac{1}{z_{\frac{1}{2}} - z_{\frac{3}{2}}} \frac{\kappa}{z_{\frac{1}{2}} - z_{1}} T_{g,1}^{n+1} - \frac{1}{z_{\frac{1}{2}} - z_{\frac{3}{2}}} F_{g}^{n+1} - \frac{1}{z_{\frac{1}{2}} - z_{\frac{3}{2}}} F_{g}^{n+1} - \frac{1}{z_{\frac{1}{2}} - z_{\frac{3}{2}}} T_{s}^{n+1} = \left(z_{\frac{1}{2}} - z_{\frac{3}{2}}\right) \frac{z_{\frac{1}{2}} - z_{1}}{\kappa} \left(C_{g,1} \frac{T_{g,1}^{n+1} - T_{g,1}^{n-1}}{2\Delta t} + \frac{1}{z_{\frac{1}{2}} - z_{\frac{3}{2}}} \frac{\kappa}{z_{\frac{1}{2}} - z_{1}} T_{g,1}^{n+1} - \frac{1}{z_{\frac{1}{2}} - z_{1}} \frac{\kappa}{z_{1} - z_{1}} T_{g,1}^{n+1} - \frac{1}{z_{1} - z_{1}} \frac{\kappa}{z_{1} - z_{1}} \frac{\kappa}{z_{1} - z_{1}} T_{g,1}^{n+1} - \frac{1}{z_{1} - z_{1}} \frac{\kappa}{z_{1} - z_{1}} \frac{$$

第10章 バケツモデル

10.1 数理表現

ここでは、地表面水分量の収支について述べる.

Manabe (1969) に従い、地面水分量は下の方程式に従うとする.

$$\frac{\partial M_w}{\partial t} = -F_q + F_{PRCP} + F_{SM} - F_{RO} \tag{10.1}$$

ここで, F_q , F_{PRCP} , F_{SM} , F_{RO} はそれぞれ地表面の水蒸気フラックス, 降水・降雪フ ラックス, 融雪フラックス, そして流出フラックスである. ただし, $0 \le M_w \le M_{w,max}$ であり, $M_{w,max}$ は地面が保持できる水の最大量である.

10.2 離散表現

地表面水分量の支配方程式は下のように離散化される.

$$\frac{M_w^{n+1} - M_w^{n-1}}{2\Delta t} = -F_{q,\frac{1}{2}} + F_{PRCP} + F_{SM} - F_{RO}$$
(10.2)

ここで、 F_q 、 F_{PRCP} , F_{SM} , F_{RO} はそれぞれ地表面の水蒸気フラックス、降水・降雪フ ラックス、融雪フラックス、そして流出フラックスである. ただし、 $0 \le M_w \le M_{w,max}$ であり、 $M_{w,max}$ は地面が保持できる水の最大量である.

10.3 参考文献

Manabe, S., J. Smagorinsky, and R. F. Strickler, 1965: Simulated climatology of a general circulation model with a hydrologic cycle, *Mon. Wea. Rev.*, 93, 769–798.

surface/bucket.tex(surface/bucket-references.tex)

第11章 熱収支を統合した連立方程式 の構成

11.1 離散表現

9.2 節において、大気中の熱拡散における収支、大気中の水蒸気の拡散の収支、惑星 表面の1層モデルの熱収支、惑星表面および土壌中の熱拡散の収支、海氷面上の熱 収支について書いた.既に書いたように、これらはそれぞれ単独では必ずしも閉じ ておらず、適宜組み合わせて連立方程式を構成する必要がある.ここでは、2通り の組み合わせ方を示す.

11.1.1 惑星表面に 1 層モデルを用いる場合

ここでは,惑星表面に1層モデルを用いる場合を考える.

このときは、大気中の熱拡散の収支式 (8.114), 惑星表面の 1 層モデルの熱収支式 (9.11), 水蒸気拡散による収支式 (8.133) を同時に解く. これらの式をまとめると 下のように整理される.

$$\boldsymbol{D}\boldsymbol{x}_{hq} = \boldsymbol{G}_{hq} \tag{11.1}$$

$$\boldsymbol{x}_{hq} = \begin{pmatrix} q_{k_{max}}^{t+\Delta t} - q_{k_{max}}^{t-\Delta t}, ..., q_{2}^{t+\Delta t} - q_{2}^{t-\Delta t}, q_{1}^{t+\Delta t} - q_{1}^{t-\Delta t}, \\ T_{s}^{t+\Delta t} - T_{s}^{t-\Delta t}, \\ T_{1}^{t+\Delta t} - T_{1}^{t-\Delta t}, T_{2}^{t+\Delta t} - T_{2}^{t-\Delta t}, ..., T_{k_{max}}^{t+\Delta t} - T_{k_{max}}^{t-\Delta t} \end{pmatrix}, \qquad (11.2)$$

$$= (\Delta q_{k_{max}}, ..., \Delta q_2, \Delta q_1, \Delta T_s, \Delta T_s,$$

$$\Delta T_1, \Delta T_2, \dots, \Delta T_{k_{max}}), \qquad (11.3)$$

$$\boldsymbol{G}_{hq} = (g_{q,k_{max}}, \dots, g_{q,2}, g_{q,1}, g_{s,0}, g_{h,1}, g_{h,2}, \dots, g_{h,k_{max}}), \qquad (11.4)$$

physics/physics.tex

Dの各成分は, $k \leq -1$ のとき,

$$d_{-k,k+1} = c_{k,k-1} \tag{11.5}$$

$$d_{-k,k} = c_{k,k} (11.6)$$

$$d_{-k,k-1} = c_{k,k+1} (11.7)$$

であり, k = 0 のとき,

$$d_{k,k-1} = b_{s,k,k-1} (11.8)$$

$$d_{k,k} = b_{s,k,k} \tag{11.9}$$

$$d_{k,k+1} = b_{s,k,k+1} (11.10)$$

であり, $k \ge 1$ のとき,

$$d_{k,k-1} = b_{a,k,k-1} \tag{11.11}$$

$$d_{k,k} = b_{a,k,k} \tag{11.12}$$

$$d_{k,k+1} = b_{a,k,k+1} (11.13)$$

である.

この連立一次方程式式を解いて求めた x_{hq} を用いて, 時刻 n+1 における値を

$$T_k^{n+1} = T_k^{n-1} + \Delta T_k \tag{11.14}$$

のように計算するが,惑星表面温度は

$$T_s^{n+1} = T_s^n + \Delta T_s \tag{11.15}$$

のように計算する¹.

11.1.2 土壌熱拡散モデルを用いる場合

ここでは、土壌熱拡散モデルを用いる場合を考える.

このときは、大気中の熱拡散の収支式 (8.114), 土壌熱拡散の熱収支式 (9.33) を同時に解く. これらの式をまとめると下のように整理される.

$$\boldsymbol{D}\boldsymbol{x}_{hg} = \boldsymbol{G}_{hg} \tag{11.16}$$

¹この場合,ある意味でエネルギーは保存しないと考えられるが,このようにしないと安定に計算できない...のかな?

$$\boldsymbol{x}_{hg} = \begin{pmatrix} T_{g,k_{s,max}}^{t+\Delta t} - T_{g,k_{s,max}}^{t-\Delta t}, ..., T_{g,2}^{t+\Delta t} - T_{g,2}^{t-\Delta t}, T_{g,1}^{t+\Delta t} - T_{g,1}^{t-\Delta t}, \\ T_{s}^{t+\Delta t} - T_{s}^{t-\Delta t}, \\ T_{1}^{t+\Delta t} - T_{1}^{t-\Delta t}, T_{2}^{t+\Delta t} - T_{2}^{t-\Delta t}, ..., T_{k_{max}}^{t+\Delta t} - T_{k_{max}}^{t-\Delta t} \end{pmatrix},$$
(11.17)

$$= \left(\Delta T_{g,k_{s,max}}, ..., \Delta T_{g,2}, \Delta T_{g,1}, \Delta T_s, \Delta T_1, \Delta T_2, ..., \Delta T_{k_{max}}\right), \qquad (11.18)$$

$$\boldsymbol{G}_{hg} = \left(g_{g,k_{s,max}}, \dots, g_{g,2}, g_{g,1}, g_{s,0}, g_{h,1}, g_{h,2}, \dots, g_{h,k_{max}} \right),$$
(11.19)

Dの各成分は, $k \leq 0$ のとき,

$$d_{-k,k+1} = b_{g,k,k-1} \tag{11.20}$$

$$d_{-k,k} = b_{g,k,k} (11.21)$$

$$d_{-k,k-1} = b_{g,k,k+1} (11.22)$$

であり, $k \ge 1$ のとき,

$$d_{k,k-1} = b_{a,k,k-1} \tag{11.23}$$

$$d_{k,k} = b_{a,k,k} \tag{11.24}$$

$$d_{k,k+1} = b_{a,k,k+1} \tag{11.25}$$

である.

この連立一次方程式式を解いて求めた x_{hq} を用いて、時刻n+1における値を

$$T_k^{n+1} = T_k^{n-1} + \Delta T_k \tag{11.26}$$

のように計算するが,惑星表面温度と土壌中の温度は,

$$T_s^{n+1} = T_s^n + \Delta T_s \tag{11.27}$$

$$T_{g,k}^{n+1} = T_{g,k}^n + \Delta T_{g,k} \tag{11.28}$$

のように計算する2.

11.1.3 海氷熱収支モデルを用いる場合

ここでは、海氷熱収支モデルを用いる場合を考える.

²この場合, ある意味でエネルギーは保存しないと考えられるが, このようにしないと安定に計算できない...のかな?

このときは、大気中の熱拡散の収支式 (8.114), 海氷面上の熱収支式 (9.53), を同時 に解く³. これらの式をまとめると下のように整理される.

$$\boldsymbol{D}\boldsymbol{x}_{hi} = \boldsymbol{G}_{hi} \tag{11.29}$$

$$\boldsymbol{x}_{hi} = \left(T_s^{t+\Delta t} - T_s^{t-\Delta t}, T_1^{t+\Delta t} - T_1^{t-\Delta t}, T_2^{t+\Delta t} - T_2^{t-\Delta t}, ..., T_{k_{max}}^{t+\Delta t} - T_{k_{max}}^{t-\Delta t}\right), \quad (11.30)$$

$$\boldsymbol{G}_{hi} = (g_{i,0}, g_{h,1}, g_{h,2}, \dots, g_{h,k_{max}}), \qquad (11.31)$$

Dの各成分は, k = 0のとき,

$$d_{k,k-1} = b_{i,k,k-1} \tag{11.32}$$

$$d_{k,k} = b_{i,k,k} (11.33)$$

であり, $k \ge 1$ のとき,

$$d_{k,k-1} = b_{a,k,k-1} \tag{11.34}$$

$$d_{k,k} = b_{a,k,k} \tag{11.35}$$

$$d_{k,k+1} = b_{a,k,k+1} (11.36)$$

である.

³現在考えている海氷熱収支モデルは1層であり、水蒸気の熱収支式を含めて定式化しても、行列は三重対角行列にすることはできる.しかし、現状ではそのような定式化は用意していない.

付 録A 惑星大気の物理定数

A.1 地球大気の物理定数

地球大気の基本的な物理定数を以下に示す.

a	m	6.37×10^{6}
g	m s ^{-2}	9.8
C_p	$\rm J~kg^{-1}~K^{-1}$	1004.6
R	$\rm J~kg^{-1}~K^{-1}$	287.04
L	$\rm J~kg^{-1}$	2.5×10^6
C_v	$\rm J~kg^{-1}~K^{-1}$	1810.
R_v	$\rm J~kg^{-1}~K^{-1}$	461.
$d_{\rm H_2O}$	$\rm J~kg^{-1}~K^{-1}$	1000.
ϵ_v		0.622
$\delta_v = \epsilon_v^{-1} - 1$		0.606
$\kappa = R/C_p$		0.286
k		0.4
	a g C_{p} R L C_{v} R_{v} $d_{H_{2}O}$ ϵ_{v} $\delta_{v} = \epsilon_{v}^{-1} - 1$ $\kappa = R/C_{p}$ k	$\begin{array}{llllllllllllllllllllllllllllllllllll$

付 録 B 座標系・変換公式に関する 解説

B.1 球面調和函数

ここでは連続系での球面調和函数を定義し、スペクトル計算の理解に必要な性質を 挙げ、証明する.

まず球面調和函数を定義し、次いで球面調和函数が完全直交系をなすことを主張する. このことにより、球面上に分布するあらゆる連続関数が球面調和函数の重ね合わせで一意的に表されることになる.

球面調和函数は2次元ラプラシアンに関する固有関数であり、このために全波数という概念が生まれる.参考までにこのことも記しておく.

さらに、球面調和函数を空間微分した結果も書いておく.

- 1. 定義と性質 (球面調和函数, Legendre 函数, Legendre 陪函数)
- 2. 空間微分
- 3. **全波数の概念**

また、イメージをつかむために、ルジャンドル(陪) 関数のグラフを示す.

B.1.1 定義と性質

ここでは、岩波公式集¹の Legendre 函数・陪函数 \tilde{P}_n^m , 2 で規格化した Legendre 函数・陪函数 P_n^m , 4π で規格化した球面調和函数 Y_n^m の順に定義する. さらにそれ らの性質として、従う微分方程式、漸下式、完全規格直交性について述べる.

岩波公式集の Legendre 函数・陪函数 \tilde{P}_n^m

 定義

岩波公式集によると Legendre 函数・陪函数 $\tilde{P}_n^m(\mu)$ は $-1 \le \mu \le 1$ において 次式で定義される (Rodrigues の公式).

$$\tilde{P}_n^m \equiv \frac{(1-\mu^2)^{\frac{|m|}{2}}}{2^n n!} \frac{d^{n+|m|}}{d\mu^{n+|m|}} (\mu^2 - 1)^n.$$
(B.1)

ただし, m, n は $0 \le |m| \le n$ を満たす整数である. Legendre 函数 \tilde{P}_n^0 を \tilde{P}_n とも書く.

$$\frac{d}{d\mu} \left\{ (1-\mu^2) \frac{d}{d\mu} \tilde{P}_n^m \right\} + \left\{ n(n+1) - \frac{m^2}{1-\mu^2} \right\} \tilde{P}_n^m = 0.$$
(B.2)

ただし, m, n は $0 \le |m| \le n$ を満たす整数である.

Legendre 函数・陪函数の従う漸化式

 *P*_n^m(µ) は次の漸化式に従う.

$$(n - |m| + 1)\tilde{P}_{n+1}^m - (2n + 1)\mu\tilde{P}_n^m + (n + |m|)\tilde{P}_{n-1}^m = 0.$$
 (B.3)

ただし, m, n は $0 \le |m| \le n - 1$, または m = n = 0 を満たす整数である.

さらに、次の関係式が成り立つ.

$$(1-\mu^2)\frac{d}{d\mu}\tilde{P}_n^m = (n+|m|)\tilde{P}_{n-1}^m - n\mu\tilde{P}_n^m.$$
 (B.4)

ただし, m, n は $0 \le |m| \le n - 1$ を満たす整数である.

¹森口, 宇田川, 一松編「数学公式 III」,1960 を指す.

• 完全規格直交性

 $\tilde{P}_n^m(\mu)$ $(n = |m|, |m + 1, \cdots)$ は次の直交関係を満たす.

$$\int_{-1}^{1} \tilde{P}_{n}^{m}(\mu) \tilde{P}_{n'}^{m}(\mu) d\mu = \frac{2}{2n+1} \frac{(n+|m|)!}{(n-|m|)!} \delta_{nn'}.$$
 (B.5)

ただし, m, n, n' は $0 \le |m| \le n, n'$ を満たす整数である.

 $-1 \leq \mu \leq 1$ で定義される連続関数 $A(\mu)$ は $\{\tilde{P}_n^m | n = |m|, |m+1|, \cdots\}$ を用いて

$$A(\mu) = \sum_{n=|m|}^{\infty} \tilde{A}_n^m \tilde{P}_n^m(\mu), \qquad (B.6)$$

$$\tilde{A}_{n}^{m} = \frac{2n+1}{2} \frac{(n-|m|)!}{(n+|m|)!} \int_{-1}^{1} A(\mu) \tilde{P}_{n}^{m}(\mu) d\mu$$
(B.7)

と表される.

2 で規格化した Legendre 函数・陪函数 P_n^m

 定義

2 で規格化した Legendre 函数・陪函数 $P_n^m(\mu)$ は $-1 \le \mu \le 1$ において次式 で定義される.

$$P_n^m \equiv \sqrt{\frac{(2n+1)(n-|m|)!}{(n+|m|)!}} \tilde{P}_n^m = \sqrt{\frac{(2n+1)(n-|m|)!}{(n+|m|)!}} \frac{(1-\mu^2)^{\frac{|m|}{2}}}{2^n n!} \frac{d^{n+|m|}}{d\mu^{n+|m|}} (\mu^2 - 1)^n.$$
(B.8)

ただし, m, n は $0 \le |m| \le n$ を満たす整数である. Legendre 函数 P_n^0 を P_n とも書く.

Legendre 函数・陪函数の満たす方程式

 $P_n^m(\mu)$ は、次の方程式を満たす.

$$\frac{d}{d\mu} \left\{ (1-\mu^2) \frac{d}{d\mu} P_n^m \right\} + \left\{ n(n+1) - \frac{m^2}{1-\mu^2} \right\} P_n^m = 0.$$
(B.9)

ただし, m, n は $0 \le |m| \le n$ を満たす整数である.

Legendre 函数・陪函数の従う漸化式

 $P_n^m(\mu)$ は、次の漸化式に従う.

$$(n - |m| + 1)\sqrt{\frac{1}{2n + 3} \frac{(n + 1 + |m|)!}{(n + 1 - |m|)!}} P_{n+1}^{m} - (2n + 1)\sqrt{\frac{1}{2n + 1} \frac{(n + |m|)!}{(n - |m|)!}} \mu P_{n}^{m} + (n + |m|)\sqrt{\frac{1}{2n - 1} \frac{(n - 1 + |m|)!}{(n - 1 - |m|)!}} P_{n-1}^{m} = 0,$$
(B.10)

$$P_{n+1}^{m} = \sqrt{\frac{(2n+1)(2n+3)}{(n-|m|+1)(n+|m|+1)}} \mu P_{n}^{m} - \sqrt{\frac{(2n+1)(2n+3)}{(n-|m|+1)(n+|m|+1)}} \sqrt{\frac{(n-|m|)(n+|m|)}{(2n+1)(2n-1)}} P_{n-1}^{m}.$$
(B.11)

ただし, m, n は $0 \le |m| \le n - 1$, または m = n = 0 を満たす整数である. さらに次の関係式が成り立つ.

$$(1-\mu^2)\frac{d}{d\mu}P_n^m = (n+|m|)\sqrt{\frac{(n-|m|)(2n+1)}{(n+|m|)(2n-1)}}P_{n-1}^m - n\mu P_n^m.$$
 (B.12)

ただし, m, n は $0 \le |m| \le n - 1$ を満たす整数である.

• 完全規格直交性

 $P_n^m(\mu)$ $(n = |m|, |m + 1, \cdots)$ は次の直交関係を満たす.

$$\int_{-1}^{1} P_{n}^{m}(\mu) P_{n'}^{m}(\mu) d\mu = 2\delta_{nn'}.$$
(B.13)

ただし, m, n, n' は $0 \le |m| \le n, n'$ を満たす整数である.

 $-1 \leq \mu \leq 1$ で定義される連続関数 $A(\mu)$ は $\{P_n^m | n = |m|, |m+1|, \cdots\}$ を用いて

$$A(\mu) = \sum_{n=|m|}^{\infty} \tilde{A}_n^m P_n^m(\mu), \qquad (B.14)$$

$$\tilde{A}_{n}^{m} = \frac{1}{2} \int_{-1}^{1} A(\mu) P_{n}^{m}(\mu) d\mu$$
(B.15)

と表される.

球面調和函数 Y_n^m

 定義

球面調和函数 $Y_n^m(\lambda, \varphi)$ は Legendre 函数 $P_n^m(\sin \varphi)$, 三角関数²exp $(im\lambda)$ を 用いて次のように定義される.

$$Y_n^m(\lambda,\varphi) \equiv P_n^m(\sin\varphi) \exp(im\lambda). \tag{B.16}$$

ただし, m, n は $0 \le |m| \le n$ を満たす整数である.

- 球面調和函数の満たす方程式
 - $Y_n^m(\lambda, \varphi)$ は次の方程式を満たす.

$$\left[\frac{1}{\cos\varphi}\frac{\partial}{\partial\varphi}\left(\cos\varphi\frac{\partial}{\partial\varphi}\right) + \frac{1}{\cos^2\varphi}\frac{\partial^2}{\partial\lambda^2} + n(n+1)\right]Y_n^m = 0.$$
(B.17)

すなわち,

$$\left[\frac{\partial}{\partial\mu}\left((1-\mu^2)\frac{\partial}{\partial\mu}\right) + \frac{1}{1-\mu^2}\frac{\partial^2}{\partial\lambda^2} + n(n+1)\right]Y_n^m = 0$$
(B.18)

の解である. ただし, m, n は $0 \le |m| \le n$ を満たす整数である.

• 完全規格直交性

 Y_n^m は次の直交関係を満たす.

$$\int_{-1}^{1} Y_n^m(\lambda,\varphi) Y_{n'}^{m'*}(\lambda,\varphi) d(\sin\varphi) d\lambda = 4\pi \delta_{mm'} \delta_{nn'}.$$
 (B.19)

ただし, m, m', n, n' は $0 \le |m| \le n \ge 0 \le |m'| \le n'$ とを満たす整数である. 球面上で定義される連続関数 $A(\lambda, \varphi)$ は $\{Y_n^m | m = 0, 1, 2, \cdots, n = |m|, |m+1|, \cdots\}$ を用いて

$$A(\lambda,\varphi) = \sum_{m=0}^{\infty} \sum_{n=|m|}^{\infty} \tilde{A}_n^m Y_n^m(\lambda,\varphi), \qquad (B.20)$$

$$\tilde{A}_{n}^{m} = \frac{1}{4\pi} \int_{-1}^{1} d(\sin\varphi) \int_{0}^{2\pi} d\lambda A(\lambda,\varphi) Y_{n}^{m*}(\lambda,\varphi)$$
(B.21)

と表される.

 $e^{-2}\exp(im\lambda)$ は $\int_{0}^{2\pi}\exp(im\lambda)\exp(-im'\lambda)d\lambda = 2\pi\delta_{mm'}$ を満たす. ただし, m,m'は整数である.

B.1.2 球面調和函数の空間微分

ここでは、球面調和函数 $Y_n^m(arphi,\lambda)$ の

- *x* 微分
- y 微分
- 2次元ラプラシアン

の計算をする.

x 微分

$$\frac{1}{r\cos\varphi}\frac{\partial Y_n^m}{\partial\lambda} = \frac{1}{r\cos\varphi}\frac{\partial}{\partial\lambda}\left(P_n^m(\sin\varphi)\exp(im\lambda)\right) = \frac{im}{r\cos\varphi}P_n^m(\sin\varphi)\exp(im\lambda).$$
(B.22)

y 微分

$$\frac{1}{r}\frac{\partial Y_n^m}{\partial \varphi} = \frac{1}{r}\frac{\partial}{\partial \varphi}\left(P_n^m(\sin\varphi)\exp(im\lambda)\right) = \frac{\sqrt{1-\mu^2}}{r}\frac{d}{d\mu}P_n^m(\mu)\exp(im\lambda). \quad (B.23)$$

2次元ラプラシアン

$$\nabla_{H}^{2} Y_{n}^{m} \equiv \frac{1}{r^{2}} \left[\frac{\partial}{\partial \mu} \left((1 - \mu^{2}) \frac{\partial}{\partial \mu} \right) + \frac{1}{1 - \mu^{2}} \frac{\partial^{2}}{\partial \lambda^{2}} \right] Y_{n}^{m} \\
= \frac{1}{r^{2}} \left[\frac{1}{\cos \varphi} \frac{\partial}{\partial \varphi} \left(\cos \varphi \frac{\partial}{\partial \varphi} \right) + \frac{1}{\cos^{2} \varphi} \frac{\partial^{2}}{\partial \lambda^{2}} \right] Y_{n}^{m} \qquad (B.24) \\
= -\frac{n(n+1)}{r^{2}} Y_{n}^{m}$$

B.1.3 コメント — 全波数について

球面調和函数 $Y_n^m(\lambda, \varphi)$ において n のことを全波数と呼ぶ.

全波数には、座標系の回転に関して不変である、という特徴がある. すなわち、任意の $Y_n^m(\lambda, \varphi)$ は回転して得られる座標系 (λ', φ') における全波数 n の球面調和函数 $\{Y_n^m(\lambda', \varphi') | m = -n, -n+1, \cdots, n\}$ の和で表現できる :

$$Y_n^m(\lambda,\varphi) = \sum_{m'=-n}^n A_n^{m'} Y_n^{m'*}(\lambda',\varphi').$$
(B.25)

のである³. この特徴は, 球面調和函数が 2 次元ラプラシアンの固有値であること によっている⁴.

³この特徴を言い替えれば、全波数 n の球面調和函数の重ね合わせで表現できる分布関数は座標 系を回転させた系においても全波数 n の球面調和函数の重ね合わせで表現できることになる.

 $^{{}^{4}\}nabla_{H}^{2} \equiv \frac{1}{r^{2}} \left[\frac{\partial}{\partial \varphi} \left(\cos \varphi \frac{\partial}{\partial \varphi} \right) + \frac{1}{\cos^{2} \varphi} \frac{\partial^{2}}{\partial \lambda^{2}} \right]$ の,固有値を $-\frac{n(n+1)}{r^{2}}$ とする固有関数であることと、スカラー演算子 ∇_{H}^{2} が座標系の回転に関して不変な演算子であることとに起因する.

カラー演算子 ∇_H^2 が座標系の回転に関して不変な演算子であることとに起因する. すなわち, $\nabla_H^2 Y_n^m(\lambda, \varphi) = -\frac{n(n+1)}{r^2} Y_n^m(\lambda, \varphi)$ より,球面調和函数 $Y_n^m \exp(im\lambda)$ は固有値を $-\frac{n(n+1)}{r^2}$ とする ∇_H^2 の固有関数である. $\{Y_n^m | n = 0, 1, 2, \cdots, m = -n, -n+1, \cdots, n\}$ の完全直交性より, $\{Y_n^m | m = -n, -n+1, \cdots, n\}$ は $\nabla_H^2 f = -\frac{n(n+1)}{r^2} f$ の解空間を張っている基底である. 座標系を回転させて,新たな座標系での球面調和函数 $Y_n^m(\lambda', \varphi')$ の和の形で前の座標系での球面調和函数 $Y_n^m(\lambda, \varphi)$ を表現することを考えよう.

絶対系で見て同じ位置の値を比べると、2次元ラプラシアンを演算した値は不変なので、前の座標 系での球面調和函数 $Y_n^m(\lambda', \varphi')$ は新たな座標系においても $\nabla_H^{'2}Y_n^m = -\frac{n(n+1)}{r^2}Y_n^m$ の解である.新たな座標系の球面調和函数の集合 $\{Y_n^m(\lambda', \varphi')|m = -n, -n+1, \cdots, n\}$ も $\nabla_H^{'2}Y_n^m = -\frac{n(n+1)}{r^2}Y_n^m$ の解空間の基底である.したがって、前の座標系の球面調和函数は新たな座標系の球面調和函数の和の形で書ける.

B.1.4 グラフ

 $P_n^m(\mu)$ の概形をつかむために、2で規格化した $P_n, P_n^1, P_n^{2.5}$ のグラフを示す.

岩波公式集の Legendre 函数 \tilde{P}_n のグラフ (森口, 宇田川, 一松, 1960)

Legendre 函数 $\overline{P_n^1} = P_n^1/\sqrt{2}, \overline{P_n^2} = P_n^2/\sqrt{2}$ のグラフ (森口, 宇田川, 一松, 1960)

⁵(2005/4/4 石渡) 関数形も書いておきたい. グラフは自分で描きたい.

2011/02/21(地球流体電脳倶楽部)spectral/spectral.tex(spectral/spl-spectral-differentiation.tex)

B.2 微分公式, GCMの変数の微分関係式

ここでは、スカラー量、ベクトルの微分を計算する. さらにそれらを元に、発散 D、 渦度 ζ , 速度ポテンシャル χ , 流線関数 ψ と (u, v) との関係を付ける.

B.2.1 スカラー量の微分

スカラー量
$$f(\lambda, \varphi)$$
 の x 微分は $\frac{1}{r \cos \varphi} \frac{\partial f}{\partial \lambda}$ で与えられる.

fの y 微分は $\frac{1}{r} \frac{\partial f}{\partial \varphi} \left(= \frac{\cos \varphi}{r} \frac{\partial f}{\partial \mu} \right)$ で与えられる.

fの2次元ラプラシアンは

$$\nabla_{H}^{2} f \equiv \frac{1}{r^{2}} \left[\frac{1}{\cos \varphi} \frac{\partial}{\partial \varphi} \left(\cos \varphi \frac{\partial}{\partial \varphi} \right) + \frac{1}{\cos^{2} \varphi} \frac{\partial^{2}}{\partial \lambda^{2}} \right] f$$
$$= \frac{1}{r^{2}} \left[\frac{\partial}{\partial \mu} \left\{ (1 - \mu^{2}) \frac{\partial}{\partial \mu} \right\} + \frac{1}{1 - \mu^{2}} \frac{\partial^{2}}{\partial \lambda^{2}} \right] f$$
(B.26)

で与えられる.

B.2.2 ベクトル量の微分

2次元ベクトル場 $\boldsymbol{v} = (v_1, v_2)$ の水平発散は

$$\operatorname{div}_{H} \boldsymbol{v} \equiv \frac{1}{r \cos \varphi} \frac{\partial v_{1}}{\partial \lambda} + \frac{1}{r \cos \varphi} \frac{\partial}{\partial \varphi} (v_{2} \cos \varphi)$$
$$= \frac{1}{r \sqrt{1 - \mu^{2}}} \frac{\partial v_{1}}{\partial \lambda} + \frac{1}{r} \frac{\partial}{\partial \mu} (\sqrt{1 - \mu^{2}} v_{2})$$
(B.27)

で与えられる.

v の回転の r 成分は,

$$(\operatorname{rot} \boldsymbol{v})_{r} \equiv \frac{1}{r \cos \varphi} \frac{\partial v_{2}}{\partial \lambda} - \frac{1}{r \cos \varphi} \frac{\partial}{\partial \varphi} (v_{1} \cos \varphi)$$
$$= \frac{1}{r \sqrt{1 - \mu^{2}}} \frac{\partial v_{2}}{\partial \lambda} - \frac{1}{r} \frac{\partial}{\partial \mu} (\sqrt{1 - \mu^{2}} v_{1})$$
(B.28)

spectral/spectral.tex(spectral/spl-spectral-differentiation.tex) 2011/02/21(地球流体電脳倶楽部)

で与えられる.

以上で得られた微分公式を元に,以下に実際にGCMで使用する便利な微分の公式 を並べておく.

B.2.3 発散

水平分布する速度場の水平発散 D を u, v を用いて表す

$$D = \frac{1}{r\cos\varphi}\frac{\partial u}{\partial\lambda} + \frac{1}{r\cos\varphi}\frac{\partial}{\partial\varphi}(v\cos\varphi).$$
(B.29)

B.2.4 渦度

水平分布する速度場の渦度 $\zeta \in u, v \in \mathcal{H}$ いて表す $\zeta = \frac{1}{r\cos\varphi} \frac{\partial v}{\partial \lambda} - \frac{1}{r\cos\varphi} \frac{\partial}{\partial \varphi} (u\cos\varphi). \tag{B.30}$

B.2.5 速度ポテンシャル, 流線関数と (*u*, *v*)

速度ポテンシャル χ , 流線関数 ψ は

$$D \equiv \nabla_H^2 \chi, \tag{B.31}$$

$$\zeta \equiv \nabla_H^2 \psi \tag{B.32}$$

で定義される. (*u*,*v*) を χ, ψ で表す.

$$u = -\frac{1}{r}\frac{\partial\psi}{\partial\varphi} + \frac{1}{r\cos\varphi}\frac{\partial\chi}{\partial\lambda},\tag{B.33}$$

$$v = \frac{1}{r\cos\varphi}\frac{\partial\psi}{\partial\lambda} + \frac{1}{r}\frac{\partial\chi}{\partial\varphi}$$
(B.34)

となる.

B.3 Legendre函数 P_n の性質

ここでは Legendre 函数 P_n の性質である

1. n-1次以下の多項式との積を $-1 \le \mu \le 1$ まで積分すると零になること

2. $P_n(\mu)$ が $-1 < \mu < 1$ に n 個の零点を持つこと,

を記す.1より Gauss 格子を定義することが保証される.また,1,2 は共に Gauss-Legendre の公式の証明に用いられる.

B.3.1 多項式とLegendre 函数の積の積分

 $P_n(\mu)$ は、 μ の n次多項式である.n-1次以下の任意の多項式は $P_0 \sim P_{n-1}$ の和で表されること、 P_n の直交性から明らかに、n-1次以下の任意の多項式 $f(\mu)$ との積を積分すると

$$\int_{-1}^{1} f(\mu) P_n(\mu) d\mu = 0 \tag{B.35}$$

が成り立つことがわかる.

B.3.2 Legendre 函数の零点

 P_n は $-1 < \mu < 1$ に n 個の互いに異なる零点を持っている. このことについて, 以下に証明しておく. (寺沢, 1983 の 10.7 節より)

- 1. $f(x) = (x-1)^n (x+1)^n$ を導入する.
- 2. f = 0の解は, x = -1, 1である. ゆえに, Rolle の定理により, f' はある α ($-1 < \alpha < 1$) で $f'(\alpha) = 0$ となる. $f' = 2nx(x^2 - 1)^{n-1}$ より, f' = 0の解は $x = -1, \alpha, 1$ のみである.
- 3. 同様に、f'' = 0の解は $x = -1, \beta_1, \beta_2, 1$ ($-1 < \beta_1 < \beta_2 < 1$)のみ.
- 4. 以上を繰り返すと, $f^{(n)} = 0$ の解は $-1 \ge 1$ の間で互いに異なる n 個の解を 持つ. (x = -1, 1 は解でないことに注意せよ.)
- 5. したがって, $P_n = \frac{1}{2^n n!} \frac{d^n}{d\mu^n} (\mu^2 1)^n$ は -1 と 1 の間で互いに異なる n 個の 解を持つ. (証明終り)

この零点の求め方としては, $x_j = \cos \frac{j-1/2}{n} \pi$ を近似解として Newton 法を用いるという方法がある.

B.4 積分評価

B.4.1 Gauss の台形公式

ここでは Gauss の台形公式を示す.

波数 M 以下の三角函数で表現される $g(\lambda)$ ($0 \le \lambda < 2\pi$)

$$g(\lambda) = \sum_{m=-M}^{m=M} g_m \exp(im\lambda)$$
(B.36)

について M < I を満たすように I をとると,

$$\frac{1}{2\pi} \int_{0}^{2\pi} g(\lambda) d\lambda = \frac{1}{I} \sum_{n=1}^{I} g(\lambda_n),$$
(B.37)
$$\lambda_n = \frac{2\pi (n-1)}{I} \quad (n = 1, 2, \cdots, I)$$

が成り立つ. これを Gauss の台形公式という.

より実用的な公式は,

$$\sum_{n=1}^{I} \exp(im\lambda_n) = \begin{cases} I & (m=0), \\ 0 & (0 < |m| < I), \end{cases}$$

$$\lambda_n = \frac{2\pi(n-1)}{I} \quad (n = 1, 2, \cdots, I)$$
(B.38)

である. この証明は, I > M(|m|の最大値) より $m \neq 0$ の時には $\exp(im\lambda_n) = \exp\left(\frac{2\pi im(n-1)}{I}\right)$ において, 全ての n について m(n-1) が Iの整数倍になることがないことを考慮すると明らかである (m, n-1はともに Iよりも小さい整数なので, m(n-1)は Iの整数倍にならない)⁶.

以下に Gauss の台形公式の証明を記す.まず, 左辺を計算すると,

$$\frac{1}{2\pi} \int_0^{2\pi} g(\lambda) d\lambda = \sum_{m=-M}^M \frac{1}{2\pi} g_m \int_0^{2\pi} \exp(im\lambda) d\lambda = g_0 \tag{B.40}$$

⁶等比級数の和を直接計算しても良い.

$$\sum_{n=1}^{I} \exp\left\{im\frac{2\pi(n-1)}{I}\right\} = \frac{1 - \left(e^{\frac{im2\pi}{I}}\right)^{I}}{1 - e^{\frac{im2\pi}{I}}} = \frac{1 - e^{im2\pi}}{1 - e^{\frac{im2\pi}{I}}} = 0$$
(B.39)

である. ここで, $\int_0^{2\pi} \exp(im\lambda) d\lambda$ は m = 0 の項しか残らないことを使った. 一方 右辺は

$$\frac{1}{I}\sum_{n=1}^{I}g(\lambda_{n}) = \frac{1}{I}\sum_{n=1}^{I}\sum_{m=-M}^{M}g_{m}\exp(im\lambda_{n})$$
$$= g_{0} + \sum_{m=-M, m\neq 0}^{M}\frac{g_{m}}{I}\sum_{n=1}^{I}\left(\exp(\frac{2\pi im}{I})\right)^{n-1}.$$
 (B.41)

ここで、上に示した「より実用的な公式」により

$$\sum_{n=1}^{I} \left(\exp(\frac{2\pi i m}{I}) \right)^{n-1} = 0 \quad (m \neq 0)$$
 (B.42)

が成り立つ.したがって,

$$\frac{1}{2\pi} \int_0^{2\pi} g(\lambda) d\lambda = \frac{1}{I} \sum_{n=1}^I g(\lambda_n)$$
(B.43)

となる.

B.4.2 Gauss-Legendre の公式

 $f(\mu)$ を 2J - 1次以下の多項式とする. P_n を 2 で規格化した n 次の Legendre 函数とする. このとき、 $\int_{-1}^{1} f d\mu$ は P_J の零点である Gauss 格子 μ_j ($j = 1, 2, \dots, J$) における fの値 $f(\mu_j)$ のみを用いて、次式にもとづいて正確に評価することができる.

$$\int_{-1}^{1} f(\mu) d\mu = 2 \sum_{j=1}^{J} f(\mu_j) w_j, \tag{B.44}$$

$$w_j = \frac{1}{2} \int_{-1}^{1} \frac{P_J(\mu)}{(\mu - \mu_j) P'_J(\mu_i)} d\mu = \frac{(2J - 1)(1 - \mu_j^2)}{(JP_{J-1}(\mu_j))^2}.$$
 (B.45)

ここで, w_j は Gauss 荷重と呼ばれる.

以下では上の式を証明する. ただし, Legendre 函数としては, 最初は岩波公式集の Legendre 函数 \tilde{P}_n を用い, 最後に 2 で規格化した Legendre 函数 P_n に直すことに する⁷.

spectral/spectral.tex(spectral/spl-gaussgr.tex)

 $^{^7}$ 混乱を招かぬよう、このような手続きを踏む.実際、公式集を含む他の文献には \tilde{P}_n^m の公式が書かれていることが多いので、このように書く方が他と参照しやすいであろう.

<u>STEP 1</u> Lagrange 補間の導入

 $f(\mu)$ を K 次多項式 ($0 \le K \le 2J - 1$)とする. \tilde{P}_n を岩波公式集の Legendre 函数 (Rodrigues の公式)とする.

$$\int_{-1}^{1} \tilde{P}_{n}(\mu) \tilde{P}_{n'}(\mu) d\mu = \frac{2}{2n+1} \delta_{nn'}.$$
 (B.46)

 $L(\mu)$ を, $f(\mu_i)$ を Lagrange 補間公式にしたがって補間した多項式として定義する.

$$L(\mu) \equiv \sum_{j=1}^{J} f(\mu_j) \prod_{k=1, k \neq j}^{J} \frac{\mu - \mu_k}{\mu_j - \mu_k}.$$
 (B.47)

このとき, 各 *j* について $L(\mu_j) = f(\mu_j)$ である. ここで *L* は, $0 \le K \le J - 1$ の時 (*f* が *J* - 1 次以下の多項式) のときは厳密に *L* = *f* になる⁸ ことに注意せよ.

したがって、関数 $f(\mu) - L(\mu)$ は

- $0 \le K \le J 1$ の時, 0 である.
- J ≤ K ≤ 2J − 1 の時, µ = µ_j を零点とする K 次多項式である. µ_j は J 次多項式 P̃_J(µ) の零点で あることを思い出すと, f − L は P̃_J(µ) で割り切れるので, ある K − J 次多 項式 S(µ) を用いて,

$$f(\mu) - L(\mu) = P_J(\mu)S(\mu)$$
 (B.48)

と書くことができる.

 $f(\mu) - L(\mu)$ を μ について -1 から 1 まで積分する. $J \le K \le 2J - 1$ の時につい

⁸このことはL-fがJ-1次以下の多項式であること, J個の零点 μ_j を持つことから明らか.

ては Legendre 函数の直交性より, $\tilde{P}_J(\mu)S(\mu)$ の積分は零である. したがって,

$$f_{-1}^{1} f(\mu) d\mu = \int_{-1}^{1} L(\mu) d\mu$$

$$= \sum_{j=1}^{J} f(\mu_{j}) \int_{-1}^{1} \frac{\prod_{k=1}^{J} (\mu - \mu_{k})}{(\mu - \mu_{j}) \prod_{k=1, k \neq j}^{J} (\mu_{j} - \mu_{k})} d\mu$$

$$= \sum_{j=1}^{J} f(\mu_{j}) \int_{-1}^{1} \frac{\tilde{P}_{J}(\mu)}{(\mu - \mu_{j}) \tilde{P}_{J}'(\mu_{j})} d\mu$$

$$= 2 \sum_{j=1}^{J} f(\mu_{j}) w_{j}$$
(B.49)

ここで、証明すべき式の P_J は規格化されていて、上の式の \tilde{P}_J は規格化されてい ないのにもかかわらず同じ w_j が使われているが、 \tilde{P}_J と P_J の規格化定数は同じ なので consistent である.

$$\underline{\text{STEP 2}}$$
 $w_j = \frac{1}{2} \int_{-1}^1 \frac{\tilde{P}_J(\mu)}{(\mu - \mu_j)\tilde{P}'_J(\mu_j)} d\mu$ の漸化式を用いた変形

漸化式 (岩波の Lgendre 関数・陪関数の従う漸化式) において m = 0 とした式

$$(n+1)\tilde{P}_{n+1}(\mu) = (2n+1)\mu\tilde{P}_n(\mu) - n\tilde{P}_{n-1}(\mu) \quad (n=0,1,2,\cdots)$$
(B.50)

より,

$$(n+1) \begin{vmatrix} \tilde{P}_{n+1}(x) & \tilde{P}_{n}(x) \\ \tilde{P}_{n+1}(y) & \tilde{P}_{n}(y) \end{vmatrix} = \begin{vmatrix} (2n+1)x\tilde{P}_{n}(x) - n\tilde{P}_{n-1}(x) & \tilde{P}_{n}(x) \\ (2n+1)y\tilde{P}_{n}(y) - n\tilde{P}_{n-1}(y) & \tilde{P}_{n}(y) \end{vmatrix}$$
$$= (2n+1)(x-y)\tilde{P}_{n}(x)\tilde{P}_{n}(y) + \tilde{P}_{n-1}(y)\tilde{P}_{n}(x))$$
$$= (2n+1)(x-y)\tilde{P}_{n}(x)\tilde{P}_{n}(y) + n \begin{vmatrix} \tilde{P}_{n}(x) & \tilde{P}_{n-1}(x) \\ \tilde{P}_{n}(y) & \tilde{P}_{n-1}(y) \end{vmatrix}$$
(B.51)

となる. この式を $n = 0, 1, \dots, n-1$ について加えると,

$$n \begin{vmatrix} \tilde{P}_{n}(x) & \tilde{P}_{n-1}(x) \\ \tilde{P}_{n}(y) & \tilde{P}_{n-1}(y) \end{vmatrix} = \sum_{k=0}^{n-1} (2k+1)(x-y)\tilde{P}_{k}(x)\tilde{P}_{k}(y)$$
(B.52)

が成り立つ. ここで $n = J, x = \mu, y = \mu_i$ とすると $\tilde{P}_J(\mu_i) = 0$ より,

$$J\tilde{P}_{J}(\mu)\tilde{P}_{J-1}(\mu_{j}) = \sum_{k=0}^{J-1} (2k+1)(\mu-\mu_{j})\tilde{P}_{k}(\mu)\tilde{P}_{k}(\mu_{j}).$$
(B.53)

よって,

$$\frac{\tilde{P}_{J}(\mu)}{\mu - \mu_{j}} = \frac{\sum_{k=0}^{J-1} (2k+1)\tilde{P}_{k}(\mu)\tilde{P}_{k}(\mu_{j})}{J\tilde{P}_{J-1}(\mu_{j})}$$
(B.54)

である.したがって,

$$w_{j} = \frac{1}{2} \int_{-1}^{1} \frac{\tilde{P}_{J}(\mu)}{(\mu - \mu_{j})\tilde{P}'_{J}(\mu_{j})} d\mu$$

$$= \frac{1}{2J\tilde{P}_{J-1}(\mu_{j})\tilde{P}'_{J}(\mu_{j})} \sum_{k=0}^{J-1} (2k+1)\tilde{P}_{k}(\mu_{j}) \int_{-1}^{1} \tilde{P}_{k}(\mu)d\mu$$

$$= \frac{1}{J\tilde{P}_{J-1}(\mu_{j})\tilde{P}'_{J}(\mu_{j})}$$
(B.55)

である. ただし, (B.55) における積分は, k = 0 の時のみ 0 でない値を持つこと, および $\tilde{P}_0 = 1$ を使った. さらに, 漸化式

$$(1-\mu^2)\frac{\partial P_n}{\partial \mu} = n\tilde{P}_{n-1}(\mu) - n\mu\tilde{P}_n(\mu)$$
(B.56)

で $n = J, \mu = \mu_j$ とする. $\tilde{P}_J(\mu_j) = 0$ より,

$$w_j = \frac{1 - \mu_j^2}{(J\tilde{P}_{J-1}(\mu_j))^2} \tag{B.57}$$

となる.

STEP3 \tilde{P}_n の規格化

 $P_n \epsilon$

$$\int_{-1}^{1} P_n(\mu) P'_n(\mu) d\mu = 2$$
(B.58)

になるように規格化する. $\tilde{P}_{J-1} = \sqrt{rac{1}{2(\mathrm{J}-1)+1}} P_{J-1}$ より,

$$w_j = \frac{1 - \mu_j^2}{(J\sqrt{\frac{1}{2J-1}}P_{J-1}(\mu_j))^2} = \frac{(2J-1)(1-\mu_j^2)}{(JP_{J-1}(\mu_j))^2}$$
(B.59)

となる.

まとめ

以上より

$$\int_{-1}^{1} f(\mu) d\mu = 2 \sum_{j=1}^{J} f(\mu_j) w_j, \qquad (B.60)$$

95

$$w_j = \frac{(2J-1)(1-\mu_j^2)}{(JP_{J-1}(\mu_j))^2}$$
(B.61)

B.5 球面調和函数の離散的直交関係

ここでは球面直交関数の離散的直交関係である選点直交性を示す.

$$\sum_{j=1}^{J} \sum_{i=1}^{I} P_{n}^{m}(\mu_{j}) P_{n'}^{m'}(\mu_{j}) \exp(im\lambda_{i}) \exp(-im'\lambda_{i}) w_{j} = I\delta_{nn'}\delta_{mm'}$$
(B.62)

ここで、i, j, m, m', n, n', I, J, M, N(m) は整数で、 $1 \le i \le I, 1 \le j \le J, 0 \le |m|, |m'| \le M, |m| \le n \le N, |m'| \le n' \le N$ であり、 $M \le \left[\frac{I}{2}\right], N(m) \le J - 1$ を満たす.また、 w_j は Gauss 荷重、 $\lambda_i = \frac{2\pi(i-1)}{I}, \mu_j$ は $P_J(\mu)$ の零点である.[]は それを越えない最大の整数を表す.これは、有限な直交多項式系において成り立つ 選点直交性と呼ばれる性質である⁹.

この式を証明する.Legendre 函数・陪函数の定義・(連続系での)直交性, Gauss の台形公式, Legendre 函数の零点を用いた多項式の積分評価を既知とすると,

$$\sum_{j=1}^{J} \sum_{i=1}^{I} P_n^m(\mu_j) P_{n'}^{m'}(\mu_j) \exp(im\lambda_i) \exp(-im'\lambda_i) w_j$$
$$= I \sum_{j=1}^{J} P_n^m(\mu_j) P_{n'}^{m'}(\mu_j) w_j \delta_{mm'}.$$
(B.63)

⁹別の離散的直交関係については後で述べる.

spectral/spectral.tex(spectral/spl-spherical-orthogonal.tex) 2011/02/21(地球流体電脳倶楽部)

ここで Gauss の台形公式を使った. 更に変形すると

$$\sum_{j=1}^{J} \sum_{i=1}^{I} P_n^m(\mu_j) P_{n'}^{m'}(\mu_j) \exp(im\lambda_i) \exp(-im'\lambda_i) w_j$$

= $I \sum_{j=1}^{J} P_n^m(\mu_j) P_{n'}^m(\mu_j) w_j$
= $\frac{I}{2} \int_{-1}^{1} P_n^m(\mu) P_{n'}^m(\mu) d\mu.$ (B.64)

ここで、Gauss-Legendre の公式を使った.更に、連続系の Legendre 函数・陪函数 の直交性より

$$\sum_{j=1}^{J} \sum_{i=1}^{I} P_n^m(\mu_j) P_{n'}^{m'}(\mu_j) \exp(im\lambda_i) \exp(-im'\lambda_i) w_j$$
$$= I\delta_{nn'}\delta_{mm'}$$
(B.65)

が得られる.以上により、離散化した球面調和関数の選点直交性が示された.

余談ではあるが、直交多項式系においては離散的な直交関係としては選点直交性のほかに次のような直交関係も知られている¹⁰. { $f_k(\mu)$ }($k = 0, 1, 2, \cdots$)を [a, b]で定義された重み $w(\mu)$ 、規格化定数 λ_k の直交多項式 $\left(\int_a^b f_k(\mu)f_{k'}(\mu)w(\mu)d\mu = \lambda_k\delta_{kk'}\right)$ とする. $\mu_j, \mu_{j'}(1 \le j, j' \le J)$ を $f_J(\mu)$ の零点、 $w_j = w(\mu_j)$ とすれば、選点直交性

$$\sum_{j=0}^{J-1} f_k(\mu_j) f_{k'}(\mu_j) w_j = \lambda_k \delta_{kk'}$$
(B.66)

のほかに,

$$\sum_{k=0}^{J-1} \frac{f_k(\mu_j) f_k(\mu_{j'})}{\lambda_k} = \frac{1}{w_j} \delta_{jj'}$$
(B.67)

が成り立つ.

実際, Legendre 函数 $\{P_n\}(n = 0, 1, 2, \dots, J - 1)$ についてはこの関係が成り立つ. すなわち, w_j を GCM で用いている Gauss 荷重として,

$$\sum_{n=0}^{J-1} P_n(\mu_j) P_n(\mu_{j'}) = \frac{1}{w_j} \delta_{jj'}$$
(B.68)

¹⁰以下については,森,1984 「数値解析法」が詳しい.

である.しかし、GCM では Legendre 函数 P_J の零点でのみ値を計算することと、 波数切断の関係とから、Legendre 陪函数 $\{P_n^m\}(n = |m|, |m| + 1, |m| + 2, \dots, N)$ の離散的直交関係は意味がない¹¹. Legendre 函数の直交関係についても、波数切断 により P_n は $n = 0, 1, 2, \dots, N < J - 1$ しか扱わないので¹² 実際には意味がない.

三角関数についても同様な離散的直交関係がある. 選点直交性

$$\sum_{i=0}^{I-1} \exp(im\lambda_i) \exp(-im'\lambda_i) = I\delta_{mm'}$$
(B.69)

のほかに,

$$\sum_{n=-\frac{I}{2}+1}^{\frac{I}{2}} \exp(im\lambda_i) \exp(-im\lambda_{i'}) = I\delta_{ii'}$$
(B.70)

も成り立つ. (ただし, *I* は偶数で *I* = 2*M*. *I* が奇数の場合には, *I* = 2*M* + 1 として, *m* についての和は $-\frac{I-1}{2} \sim \frac{I-1}{2}$ でとる.)しかし GCM では, 波数切断により |*m*| の最大値 *M* は $\frac{I}{3}$ 以下の値なのでやはり意味がない¹³.

B.6 スペクトルの係数と格子点値とのやり取り

ここではスペクトルの係数と格子点値との変換法について述べる. 実際の GCM 計算において必要になるのは

- スペクトルの係数と格子点値との値のやり取り
- ・速度の格子点値の発散 D・渦度 (のスペクトルの係数への変換)
- 速度ポテンシャル χ , 流線関数 ψ (もとは 発散, 渦度)のスペクトルの係数 から速度の格子点値の作成

である.

¹¹そもそも、ここで述べている直交関係は f_k ($k = 0, 1, 2, \dots, K - 1$)が k次多項式であるよう な直交多項式系において成り立つものである. Legendre 陪函数は m が奇数のときは多項式でない し、m が偶数であっても P_n^m は n 次多項式であって、n - m 次多項式ではない. その場合にも直交 多項式の議論を拡張してここで述べている直交関係を使えるのか、については未調査である. ¹²T42 ならば、m = 0 で J = 63, N = 42, R21 ならば、m = 0 で J = 63, N = 21,である. ¹³T42 ならば I = 128 に対して M = 42, R21 ならば I = 64 に対して M = 21 である.

B.6.1 スペクトルの係数と格子点値との値のやり取り

スカラー関数 $A(\lambda, \varphi)$ の格子点値とスペクトルの係数とのやり取りは以下のとお りである. ただし,格子点値は A_{ij} $(i = 1, 2, \dots, I, j = 1, 2, \dots, J)$, スペクトル の係数は \tilde{A}_n^m $(m = -M, -M + 1, \dots, M, n = |m|, |m| + 1, \dots, N(m))$ とする.

$$A_{ij} \equiv \sum_{m=-M}^{M} \sum_{n=|m|}^{N} \tilde{A}_{n}^{m} Y_{n}^{m}(\lambda_{i}, \varphi_{j}), \qquad (B.71)$$

$$\tilde{A}_{n}^{m} = \frac{1}{I} \sum_{i=1}^{I} \sum_{j=1}^{J} A_{ij} Y_{n}^{m*}(\lambda_{i}, \varphi_{j}) w_{j}, \qquad (B.72)$$

$$w_j = \frac{(2J-1)(1-\sin^2\varphi_j)}{(JP_{J-1}(\sin\varphi_j))^2}.$$
 (B.73)

以後この文書では簡単のために、
$$\sum_{m=-M}^{M}\sum_{n=|m|}^{N}$$
を $\sum_{m,n}$ と、 $\sum_{i=1}^{I}\sum_{j=1}^{J}$ を $\sum_{i,j}$ と表記する.

B.6.2 スペクトルの係数と格子点値との値のやり取り~東西微分編 まず、

$$g \equiv \frac{\partial f}{\partial \lambda}$$

を考える.

東西微分 (λ 微分) は次式で評価する.

$$g_{ij} \equiv \left[\frac{\partial}{\partial\lambda} \left(\sum_{m,n} \tilde{f}_n^m Y_n^m(\lambda,\varphi)\right)\right]_{ij}.$$
 (B.74)

すなわち,

$$g_{ij} = \sum_{m,n} im \tilde{f}_n^m Y_n^m(\lambda_i, \varphi_j)$$
(B.75)

である. 変換公式 (B.72) で $A \in g$ とみなしたものと (B.75) とを比較すれば明ら かに¹⁴,

$$\tilde{g}_n^m = im\tilde{f}_n^m. \tag{B.76}$$

 $\overline{ 1^4$ より正確には、 $(g_{ij} =) \sum_{m,n} im \tilde{f}_n^m Y_n^m} = \sum_{m,n} \tilde{g}_n^m Y_n^m$ の両辺に左から $\sum_{i,j} Y_n^{m*}(\lambda_i, \varphi_j) w_j$ を演算すれば、 $im' \tilde{f}_{n'}^{m'} = \tilde{g}_{n'}^{m'}$ として得られる.

2011/02/21(地球流体電脳倶楽部) spectral.tex(spectral.tex(spectral-transform.tex)

よって,

$$\tilde{g}_n^m = \frac{1}{I} \sum_{i,j} im f_{ij} Y_n^{m*}(\lambda_i, \varphi_j) w_j$$
(B.77)

である.

次に,

$$h \equiv \frac{g}{r\cos^2\varphi} = \frac{1}{r\cos^2\varphi} \frac{\partial f}{\partial\lambda} \quad \left[= \frac{\partial}{\partial x} \left(\frac{f}{\cos\varphi} \right) \right]$$

とする. $f \ge h$ とのやり取りを考える. (B.74) より明らかに,

$$h_{ij} = \frac{1}{r\cos^2 \varphi_i} g_{ij}$$
$$h_{ij} = \frac{1}{r\cos^2 \varphi_j} \sum_{m,n} im \tilde{f}_n^m Y_n^m(\lambda_i, \varphi_j).$$

一方, (B.76) より

$$\tilde{h}_{n}^{m} = \left[\frac{\partial}{\partial\lambda}\left(\widetilde{\frac{f}{r\cos^{2}\varphi}}\right)\right]_{n}^{m} = im\left(\widetilde{\frac{f}{r\cos^{2}\varphi}}\right)_{n}^{m}$$
$$= \frac{1}{I}\sum_{i,j}im\left(\frac{f}{r\cos^{2}\varphi}\right)_{ij}Y_{n}^{m*}(\lambda_{i},\varphi_{j})w_{j}$$
$$= \frac{1}{I}\sum_{i,j}imf_{ij}Y_{n}^{m*}(\lambda_{i}\varphi_{j})\frac{w_{j}}{r\cos^{2}\varphi_{j}}.$$
(B.78)

B.6.3 スペクトルの係数と格子点値との値のやり取り~南北微分編

まず,

$$p\equiv \frac{\partial f}{\partial \varphi}$$

を考える.

南北微分 (φ 微分) は次式で評価する.

$$p_{ij} \equiv \left[\frac{\partial}{\partial\varphi} \left(\sum_{m,n} \tilde{f}_n^m Y_n^m\right)\right]_{ij}.$$
 (B.79)

すなわち,

$$p_{ij} = \sum_{m,n} \tilde{f}_n^m \left. \frac{dP_n^m}{d\varphi} \right|_j \exp(im\lambda_i)$$
(B.80)

である. よって, $p_n^m = \frac{1}{I} \sum_{i,j} p_{ij} Y_n^{m*} w_j$ $= \frac{1}{I} \sum_{i,j} \left(\sum_{m',n'} \tilde{f}_{n'}^{m'} \frac{dP_{n'}^{m'}}{d\varphi} \Big|_j \exp(im'\lambda_i) \right) P_n^m(\varphi_j) \exp(-im\lambda_i) w_j$ $= -\frac{1}{I} \sum_{i,j} \left(\sum_{m',n'} \tilde{f}_{n'}^{m'} P_{n'}^{m'}(\varphi_j) \exp(im'\lambda_i) \right) \frac{dP_n^m}{d\varphi} \Big|_j \exp(-im\lambda_i) w_j$ $= -\frac{1}{I} \sum_{i,j} f_{ij} \frac{dP_n^m}{d\varphi} \Big|_j \exp(-im\lambda_i) w_j$

となる. ここで、2行目から 3行目の等号では、 $\sum_{i=1}^{I} \sum_{j=1}^{J} f_{n'}^{m'} P_{n}^{m}(\varphi_{j}) \exp(im\lambda_{i}) \left. \frac{dP_{n'}^{m'}}{d\varphi} \right|_{j} \exp(-im'\lambda_{i}) w_{j}$ $= -\sum_{i=1}^{I} \sum_{j=1}^{J} f_{n'}^{m'} \left. \frac{dP_{n}^{m}}{d\varphi} \right|_{j} \exp(-im\lambda_{i}) P_{n'}^{m'}(\varphi_{j}) \exp(im'\lambda_{i}) w_{j}$ (B.81)

を用いた¹⁵.

次に,

$$q \equiv \cos^2 \varphi \frac{\partial f}{\partial \varphi} = \cos^2 \varphi \ p$$

とする.

(B.79) より明らかに,

$$q_{ij} = \cos^2 \varphi_j \sum_{m,n} \tilde{f}_n^m \left. \frac{dP_n^m}{d\varphi} \right|_j \exp(im\lambda_i)$$

15この証明は以下のとおりである.

$$\begin{split} \sum_{i} \sum_{j} f_{n'}^{m'} P_{n}^{m}(\varphi_{j}) \exp(im\lambda_{i}) \left. \frac{dP_{n'}^{m'}}{d\varphi} \right|_{j} \exp(-im'\lambda_{i}) w_{j} \\ &= I \sum_{j} f_{n'}^{m'} P_{n}^{m}(\varphi_{j}) \left. \frac{dP_{n'}^{m'}}{d\varphi} \right|_{j} w_{j} \delta_{mm'} = I \sum_{j} f_{n'}^{m} P_{n}^{m}(\varphi_{j}) \left. \frac{dP_{n'}^{m}}{d\varphi} \right|_{j} w_{j} \delta_{mm'} \\ &= \frac{I}{2} \int_{-1}^{1} f_{n'}^{m} P_{n}^{m}(\varphi) \frac{dP_{n'}^{m}}{d\varphi} d\varphi \delta_{mm'}. \end{split}$$

である. 一方,
$$\begin{split} \tilde{q}_{n}^{m} &= \frac{1}{I} \sum_{i,j} q_{ij} Y_{n}^{m*} w_{j} \\ &= \frac{1}{I} \sum_{i,j} \left(\cos^{2} \varphi_{j} \sum_{m',n'} \tilde{f}_{n'}^{m'} \frac{dP_{n'}^{m'}}{d\varphi} \Big|_{j} \exp(im'\lambda_{i}) \right) P_{n}^{m}(\varphi_{j}) \exp(-im\lambda_{i}) w_{j} \\ &= -\frac{1}{I} \sum_{i,j} \left(\sum_{m',n'} \tilde{f}_{n'}^{m'} P_{n'}^{m'}(\varphi_{j}) \exp(im'\lambda_{i}) \right) \\ &\times \left. \frac{d}{d} \left(\cos^{2} (\varphi P^{m}) \right|_{j} \exp(-im\lambda_{j}) w_{j} \right] \end{split}$$

$$\times \left. \frac{d\varphi}{d\varphi} \left(\cos \varphi P_n \right) \right|_j \exp(-im\lambda_i) w_j$$
$$= -\frac{1}{I} \sum_{i,j} f_{ij} \left. \frac{d}{d\varphi} \left(\cos^2 \varphi P_n^m \right) \right|_j \exp(-im\lambda_i) w_j$$

が成り立つ. ここで, 2行目から 3行目において,

$$\sum_{i=1}^{I} \sum_{j=1}^{J} f_{n'}^{m'} \cos^2 \varphi_j P_n^m(\varphi_j) \exp(im\lambda_i) \left. \frac{dP_{n'}^{m'}}{d\varphi} \right|_j \exp(-im'\lambda_i) w_j$$
$$= -\sum_{i=1}^{I} \sum_{j=1}^{J} f_{n'}^{m'} \left. \frac{d}{d\varphi} \left(\cos^2 \varphi P_n^m \right) \right|_j \exp(-im\lambda_i) P_{n'}^{m'}(\varphi_j) \exp(im'\lambda_i) w_j$$

を用いた¹⁶.

B.6.4 χ, ψ のスペクトルの係数から速度の格子点値への変換

ここでは χ_n^m, ψ_n^m から u_{ij}, v_{ij} を求める方法を記す.

ここで,部分積分すると

$$\sum_{i} \sum_{j} f_{n'}^{m'} P_{n}^{m}(\varphi_{j}) \exp(im\lambda_{i}) \left. \frac{dP_{n'}^{m'}}{d\varphi} \right|_{j} \exp(-im'\lambda_{i}) w_{j}$$

$$= -\frac{I}{2} \int_{-1}^{1} f_{n'}^{m} P_{n'}^{m}(\varphi) \frac{dP_{n}^{m}}{d\varphi} d\varphi \delta_{mm'}$$

$$= -I \sum_{j} f_{n'}^{m} P_{n'}^{m}(\varphi_{j}) \left. \frac{dP_{n}^{m}}{d\varphi} \right|_{j} w_{j} \delta_{mm'}$$

$$= -\sum_{i} \sum_{j} f_{n'}^{m'} P_{n'}^{m'}(\varphi_{j}) \exp(im'\lambda_{i}) \left. \frac{dP_{n}^{m}}{d\varphi} \right|_{j} \exp(-im\lambda_{i}) w_{j}.$$

¹⁶この証明は (B.81)の証明と同様である.

まず,

$$u = -\frac{1}{r}\frac{\partial\psi}{\partial\varphi} + \frac{1}{r\cos\varphi}\frac{\partial\chi}{\partial\lambda}$$
(B.82)

より,

$$u_{ij} = \sum_{m,n} \left(-\frac{1}{r} \tilde{\psi}_n^m \left. \frac{dP_n^m}{d\varphi} \right|_j + \frac{1}{r \cos \varphi_j} im \tilde{\chi}_n^m P_n^m(\sin \varphi_j) \right) \exp(im\lambda_i).$$
(B.83)

である. 同様に,

$$v = \frac{1}{r\cos\varphi}\frac{\partial\psi}{\partial\lambda} + \frac{1}{r}\frac{\partial\chi}{\partial\varphi}$$
(B.84)

より,

$$v_{ij} = \sum_{m,n} \left(\frac{1}{r \cos \varphi_j} i m \tilde{\psi}_n^m P_n^m(\sin \varphi_j) + \frac{1}{r} \tilde{\chi}_n^m \left. \frac{dP_n^m}{d\varphi} \right|_j \right) \exp(im\lambda_i).$$
(B.85)

である.

B.7 スペクトルの係数同士の関係

ここではスペクトルの係数同士の便利な公式を挙げておく. $g=rac{\partial f}{\partial\lambda}$ の時

$$\tilde{g}_n^m = im\tilde{f}_n^m. \tag{B.86}$$

 $h =
abla_H^2 f$ の時

$$\tilde{h}_{n}^{m} = -\frac{n(n+1)}{r^{2}}\tilde{f}_{n}^{m}.$$
(B.87)

(B.86) については「スペクトルの係数と格子点値とのやり取り」に証明を示した. ここでは、(B.87) について証明しておく.

微分評価の定義より,

$$h_{ij} = \left(\nabla_H^2 \sum_{m,n} \tilde{f}_n^m Y_n^m\right) \bigg|_{ij} = -\sum_{m,n} \frac{n(n+1)}{r^2} \left. \tilde{f}_n^m Y_n^m \right|_{ij}$$

である.ところで,

$$h_{ij} = \sum_{m,n} \left. \tilde{h}_n^m Y_n^m \right|_{ij}$$

である. この2つの式の右辺に左から $\sum_{i,i} Y_{n'}^{m'*}|_{ij}$ を演算して比較すると,

$$\tilde{f}_{n'}^{m'} = -\frac{n(n+1)}{r^2}\tilde{h}_{n'}^{m'}$$

を得る.

B.8 波数切断

GCM では、物理量を球面調和函数 $P_n^m(\sin \varphi) \exp(im\lambda)$ で展開したり波数空間で 計算するときに、計算資源の都合上、ある一定波数以下の波数のみを考慮して計算 する. そのことを波数切断するという¹⁷.以下ではまず、切断の基礎知識として切 断の仕方・流儀を述べ、ついで、切断における事情を述べた上で切断波数の決め方 を記す.

B.8.1 波数切断の仕方

波数切断の仕方については、東西波数(m)、南北波数(n-m)のそれぞれの切断の 方法にいくつかの流儀がある. 一般によく用いられるものは三角形切断(Triangle) 、平行四辺形切断(Rhomboidal: 偏菱形)と呼ばれるものである. 三角形切断の場 合について計算する波数領域を波数平面上に書くと(B.1)のようになる. 平方四辺 形切断の場合は、(B.2)である.

三角形切断, 平行四辺形切断, という名称は波数平面上 ((*n*, *m*) 平面) での形状による¹⁸.

より一般的な切断方法は五角形切断 ((B.3)) である.

三角形切断、平行四辺形切断はそれぞれ、五角形切断において

¹⁷後述するように,現実的には波数切断を決めると同時に格子点数が決まる.すなわち,以上の理由は格子点数を大きくとれないことの理由でもある.

¹⁸平方四辺形切断には, n の最大値を m の最大値の2倍にしないようなとり方もある.詳しくは 五角形切断に関する脚注参照.

spectral/spectral.tex(spectral/spl-truncation.tex)

図 B.1: 三角形切断の場合の波数領域

図 B.2: 平方四辺形切断の場合の波数領域

図 B.3: 五角形切断の場合の波数領域

spectral/spectral.tex(spectral/spl-truncation.tex)

- 三角形切断 $J = K = M = N_{tr}$
- 平行四辺形切断 $K = 2N_{tr}, J = M = N_{tr}$

であるような特別な場合である¹⁹.

三角形切断と平行四辺形切断の違いについて、世の中では次のように言われている²⁰.

- 三角形切断の水平分解能は、経度方向のみならず緯度方向にも一定である²¹
 分解能を上げてスケールの細かい波を表現できるようになった場合を考える。物理的にスケールの小さい波には指向性がないことと、水平分解能に方向依存性がないこととは調和的である。
 また、このことは、ある三角形波数切断した球面調和函数により表現される球面上の分布は極の位置を変えても同じ三角形波数切断した球面調和函数により正確に表現されることの言い替えでもある。
- 平行四辺形切断の場合, 各東西波数について同じだけの南北波数をとれる.

B.8.2 切断波数の決め方

ここでは切断波数と南北格子点数の決め方について記す.これらは切断の仕方を決めた後に,使用する計算資源がネックになって決まる.その際,FFTの仕様, aliasingの回避,という2つの数値的な事情を考慮した上で決める必要がある.

FFT の仕様の事情というのは,話は簡単で,東西方向に「格子 ⇔ スペクトル」変 換するために用いる FFT が効率よく動くための格子点数・波数がある²² ことで ある.

一方, aliasing に関する事情は複雑である. ここで扱っているスペクトルモデルで は,格子点でのみ値を計算している. いわゆるスペクトルを使うのは,単に格子点 上での水平微分項の評価をする時のみである. その意味で,「微分の評価にのみス

¹⁹単に K = J + M であるものも平方四辺形切断と呼ばれる. だが, 例えば R21 と呼ばれるもの は, K = 42, J = M = 21 のものである. ²⁰気象庁予報部, 1982 の p.47 より.

²¹分解能が緯度方向に変化することについては、平行四辺形切断に限らず、三角形切断以外のどれでも起こる.

²²コード依存性がある.通常,2のべき乗が好ましいとされる.コードによっては,2,3,5のべき乗の積でもよいものもある.

ペクトルを用いるグリッドモデル」と言ってもよい.そのように受け止めると,格 子点値を"正しく"計算することを目指し,また,考慮する波数は厳密にスペクトル の係数と格子との変換を行なうことのできる波数,すなわち変換において情報の落 ちないだけの波数をとらねばならないように思える.ところが実際には,スペクト ルモデル的な配慮 — ある波数以下についてのみ正しく計算し,それ以上の波数に ついては計算しない — により切断波数・格子点数が決められている.また,後述 する理由により情報は (非線形 aliasing のことを考えずとも)必ず落ちてしまうの である²³.

さて、以下では aliasing に関する事情を具体的に述べながら、切断波数に対する格 子点数の決め方を記そう. 球面上に連続分布している物理量を球面調和函数で展 開する. ある波数 M, N(m) 以下 (例えば、T42 ならば M = 42, N = 42) につい ては線形項・非線形項の両方について厳密に計算できるように I, J を決めること を目指す.

M, N を仮に固定したとして、まずは線形項について切断波数以下のスペクトルの 係数のわかっている物理量 A を格子点値に変換しさらにスペクトルの係数に正し くもどすことを考える. A は $-M \le m \le M$, $|m| \le n \le N(m)$ の m, n について は \tilde{A}_n^m がわかっているとする. 格子点値は、 $1 \le i \le I$ 、 $1 \le j \le J$ について

$$A_{ij} \equiv \sum_{m=-M}^{M} \sum_{n=|m|}^{N} \tilde{A}_{n}^{m} P_{n}^{m}(\sin\varphi_{j}) \exp(im\lambda_{i})$$
(B.88)

で与えられる. これらの格子点値から逆に $\tilde{A}_n^m(-M \le m \le M, |m| \le n \le N)$ を計算する. 離散化した系での積分を Gauss の公式, Gauss-Legendre の公式で評価 すれば,

$$\tilde{A}_n^m = \frac{1}{I} \sum_{i=1}^I \sum_{j=1}^J A_{ij} P_n^m(\sin\varphi_j) \exp(-im\lambda_i) w_j$$
(B.89)

²³実際の GCM では格子点値からスペクトルに変換する際に情報は落ちている.したがって,格子-スペクトル-格子という変換を行なうと元にはもどらない.

例えば T42 の場合、自由度は $1 + (2 \times 1 + 1) + \dots + (2 \times 42 + 1) = 43^2 = 1849$ に対して格子点数 は $128 \times 64 = 8192$ である. R21 の場合も、自由度は $(2 \times 21 + 1) \times (21 + 1) = 946$ に対して、格子 点数は $64 \times 64 = 4096$ である. すなわち、3/4 以上の情報は格子点値からスペクトルに変換すると きに落ちている.

工夫すれば情報が落ちないうまい方法があるかも知れないが,今のところ見つけていないし多分見 つからない.

もちろん、スペクトル - 格子 - スペクトルという変換では元にもどる(ように決めている).

である. ここで, w_j は φ_j における重みである. A_{ij} の定義を代入すれば,

$$\tilde{A}_{n}^{m} = \frac{1}{I} \sum_{i=1}^{I} \sum_{j=1}^{J} \left(\sum_{m'=-M}^{M} \sum_{n'=|m'|}^{N} \tilde{A}_{n'}^{m'} P_{n'}^{m'}(\sin\varphi_{j}) \exp(im'\lambda) \right) P_{n}^{m}(\sin\varphi_{j}) \exp(-im\lambda_{i}) w_{j}$$
$$= \frac{1}{I} \sum_{m'=-M}^{M} \sum_{n'=|m'|}^{N} \tilde{A}_{n'}^{m'} \sum_{i=1}^{I} \exp(i(m'-m)\lambda) \sum_{j=1}^{J} P_{n}^{m}(\sin\varphi_{j}) P_{n'}^{m'}(\sin\varphi_{j}) w_{j}$$
(B.90)

となる. この計算が \tilde{A}_n^m を正しく評価している (すなわち元にもどる) ための I, Jの条件は, $-M \le m \le M$, $|m| \le n \le N$ を満たす m, n について

$$\sum_{i=1}^{I} \exp(i(m'-m)\lambda) = I\delta_{mm'},$$
(B.91)

$$\sum_{j=1}^{J} P_n^m(\sin\varphi_j) P_{n'}^m(\sin\varphi_j) w_j = \delta_{nn'}$$
(B.92)

が成り立つことである. 三角関数の和による評価が正しいための条件は、ここに 登場する波数 |m' - m| が最大で 2M の値をとるので、Gauss の公式の適用条件 より、格子点数 I が $I \ge 2M + 1$ を満たすことである. Legendre 函数の積の和 による評価が正しいための条件は、ここに登場する計算が n + n'次の多項式²⁴ の 評価であることから、Gauss - Legendre の公式の適用条件より、格子点数 J が $2J - 1 \ge \max[n + n'] = 2\max[N]$ を満たすことである. ここで、 $\max[n + n']$ は n + n'の最大値を、 $\max[N]$ は N の最大値を表す.

ちなみに、格子点値からスペクトルの係数に変換し格子点値にもどすという立場か らすれば、この Gauss-Legendre の公式の適用条件というのが情報を落とさずには 済まない理由である²⁵.このことを以下に述べる.情報を落とさずに格子点値をス ペクトルの係数に変換し格子点値にもどすには、あらゆる東西波数について南北方 向の格子点数 *J* と同じだけの個数の Legendre 函数が必要である.東西波数 *m* の 場合、登場する Legendre 陪函数の *n* は *n* = $|m|, |m| + 1, \dots, |m| + J - 1$ である. *P*^m_n*P*^m_{n'} の次数は *n* + *n'* であるから、最大で 2J + 2|m| - 2 である. これが 2J - 1

spectral/spectral.tex(spectral/spl-truncation.tex)

²⁴ここで、三角関数の和が $I\delta_{mm'}$ となることを用いた. 一般には (m, m') の偶奇が一致しない場合には) $P_n^m P_{n'}^{m'}$ は多項式にならない.

 $^{^{25}}$ Gauss の公式の適用条件と情報欠落との関係についてコメントしておく. 格子点数 *I* が奇数の 場合には、スペクトルで同じ情報量を持つためには波数 $\frac{I-1}{2}$ までを考慮すればよいので、情報は欠 落しないことは明らかである. 一方、*I* が偶数の場合には、情報は欠落させないためには波数 $\frac{I}{2}$ が 必要であるが、この波数は Gauss の公式の適用条件を満たさない. しかしこの場合にも、(私は根拠 を調べていないが、少なくとも) 経験的には FFT および 逆 FFT によって格子 - スペクトル - 格 子変換によって情報が落ちないことが知られている.

以下になるのは m = 0 の時のみである. $m \neq 0$ の場合は高次の Legendre 函数は 計算してはならない. つまり情報を落とさざるをえない²⁶.

改めて *M*,*N* を固定するという立場にもどって、切断波数以下のスペクトルの係数のわかっている物理量 *B*,*C* の積からそれらの格子点値を用いて *B* と *C* との積(非線形項) *A* のスペクトルの係数を正しく求めるための *I*,*J* の条件を考える.

$$A = BC, \tag{B.93}$$

$$B = \sum_{m=-M}^{M} \sum_{n=|m|}^{N} \left(\tilde{B}_{n}^{m} \exp(im\lambda) \right) P_{n}^{m}(\sin\varphi), \tag{B.94}$$

$$C = \sum_{m=-M}^{M} \sum_{n=|m|}^{N} \left(\tilde{C}_{n}^{m} \exp(im\lambda) \right) P_{n}^{m}(\sin\varphi)$$
(B.95)

なる物理量 A, B, C があるとする²⁷ . B, C の $-M \le m \le M$, $|m| \le n \le N$ にお けるスペクトルの係数 $\tilde{B}_n^m, \tilde{C}_n^m$ を用いて A のスペクトルの係数 \tilde{A}_n^m を $0 \le m \le M$, $|m| \le n \le N$ については正しく計算することを考える.

$$\begin{split} \tilde{A}_{n}^{m} &\equiv \widetilde{(BC)}_{n}^{m} \\ &= \frac{1}{I} \sum_{i=1}^{I} \sum_{j=1}^{J} B_{ij} C_{ij} P_{n}^{m} (\sin \varphi_{j}) \exp(-im\lambda_{i}) w_{j} \\ &= \frac{1}{I} \sum_{i=1}^{I} \sum_{j=1}^{J} \left(\sum_{m'=-M}^{M} \sum_{n'=|m'|}^{N} \tilde{B}_{n'}^{m'} \exp(im'\lambda_{i}) P_{n''}^{m'} (\sin \varphi_{j}) \right) \\ &\times \left(\sum_{m''=-M}^{M} \sum_{n''=|m''|}^{N} \tilde{C}_{n''}^{m''} \exp(im''\lambda_{i}) P_{n''}^{m''} (\sin \varphi_{j}) \right) P_{n}^{m} (\sin \varphi_{j}) \exp(-im\lambda_{i}) w_{j} \\ &= \frac{1}{I} \sum_{m'=-M}^{M} \sum_{n'=|m'|}^{N} \sum_{m''=-M}^{M} \sum_{n''=|m''|}^{N} \tilde{B}_{n'}^{m'} \tilde{C}_{n''}^{m''} \\ &\times \sum_{i=1}^{I} \exp(i(m'+m''-m)\lambda_{i}) \sum_{j=1}^{J} P_{n'}^{m'} (\sin \varphi_{j}) P_{n''}^{m'} (\sin \varphi_{j}) P_{n}^{m} (\sin \varphi_{j}) w_{j}. \end{split}$$
(B.96)

この計算が \tilde{A}_{n}^{m} を $0 \le m \le M$, $|m| \le n \le N$ について正しく評価しているため ²⁶この事情により, 非線形項の場合を考えてさらに著しく落とすことが必要になることが次節か らわかる.

 ${}^{27}A, B, C$ とも実数である. すなわち, $\tilde{B}_n^m = \tilde{B}_n^{m*}, etc.$ となっている.

の, I, J の条件を線形項の場合と同様に考えると, 格子点数 I が $I \ge 3M + 1$ を, 格子点数 J が $2J - 1 \ge \max[n + n' + n''] = 3\max[N]$ を満たすことである. ここ で, $\max[n + n' + n'']$ は n + n' + n'' の最大値を, $\max[N]$ は N の最大値を表す.

再び格子点値からスペクトルの係数に変換し格子点値にもどすという立場からす れば、これらの I, J に関する条件から、南北成分のみならず、東西成分についても 変換によって情報が落ちてしまうことがわかる.

これまでに述べた *M*, *N* を固定したときに格子点数 *I*, *J* がとらねばならない個数 について,線形項・非線形項の2つの場合のうち条件が厳しいのは,明らかに非線 形項の場合である.この条件以下の格子点数しかとらない場合には,aliasing をお こすことになる.

以上, FFT, aliasing という2つの事情を考えて格子点数と切断波数とは同時に決められる.具体的手順は以下のとおりである.

- 1. 波数切断の仕方を決める.
- 2. FFT のかけやすい数を選ぶ. それを東西格子点数 I とする.
- 3. 東西方向の波数の最大値 M を $M = \left[\frac{I-1}{3}\right]$ にする. ただし[] はそれを越 えない最大の整数を表す記号である.
- 4. 最大全波数 N_{max} を決める. 三角形切断ならば $N_{\text{max}} = M$, 平行四辺形切断 ならば $N_{\text{max}} = 2M$ である.
- 5. 南北方向の格子点数 $J \in J \ge \frac{3N_{\max}+1}{2}$ を満たす数に選ぶ. (dcpam5 では偶数でなくてはならない.)

例えば、T42 の場合には M = 42, N = 42, 東西格子点数 *I* が 128, 南北格子点数 *J* が 64 である. R21 の場合には M = 21, N = 42, 東西格子点数 *I* が 64, 南北格子点数 *J* が 64 である.

参考までに、線形モデルの場合について決め方を示しておく、

- 1. 波数切断の仕方を決める.
- 2. FFT のかけやすい数を選ぶ. それを東西格子点数 I とする.

- 3. 東西方向の波数の最大値 M を $M = \left\lfloor \frac{I}{2} \right\rfloor$ にする. ただし [] はそれを越えな い最大の整数を表す記号である²⁸.
- 4. 最大全波数 N_{max} を決める. 三角形切断ならば $N_{\text{max}} = M$, 平行四辺形切断 ならば $N_{\text{max}} = 2M$ である.
- 5. 南北方向の格子点数 $J \in J \geq \frac{2N_{\max}+1}{2}$ を満たす数に選ぶ.

例えば、三角形切断の場合には、I = 128とすると、M = 64、N = 64、J = 65となる、つまり T64 では I = 128、J = 65である、平方四辺形切断の場合には、I = 64とすると、M = 32、N = 64、 $J \ge 65$ となる、つまり R32 では I = 64、J = 65でよい²⁹、

B.9 スペクトルモデルと差分モデル

世の中の多くの GCM の離散化の方法としては,鉛直方向については必ずレベル と称する差分による離散化を行なうが,水平方向については,差分する方法(この 方法を用いるモデルをグリッドモデルという)と球面調和函数で展開してその係 数の時間変化を計算する方法(力学過程において³⁰ この方法を用いるモデルをス ペクトルモデルという)とが用いられる.その二つの方法については一長一短が ある.ここでは双方の特徴について列挙しておく³¹.

- スペクトルモデルには水平空間差分の誤差がない.これが位相の遅れがない ことに通じる(らしい).
- もっとも、グリッド間隔 1.875 度(波数 63 相当)以上では、格子点モデルでの差分誤差も十分小さくなり、ほぼ等しい性能といえる。
- 極は特異点であり、単純には扱えない³².スペクトルモデルではうまく関数

³¹出典は、スペクトル法による数値予報(その原理と実際)(1.6)

³²問題点その1.グリッドモデルでは緯度経度図で等間隔に格子点をとると,極でも CFL を満たすようにするために,時間差分を細かくしなければならない.他は未調査.

 $^{^{28}}$ ここで, I が偶数のときについては Gauss の公式の適用条件を越えて最大波数 $\frac{I}{2}$ まで計算で きるという知識を用いた.

²⁹これらの場合でも,南北方向の細かい情報は格子 - スペクトル - 格子変換によって落ちていることに注意せよ.

³⁰adjustment 等の意味をなど考えると、特に物理過程においては、格子点で考える方が物理的に 当然であるように思う. そのためであろうか、スペクトルモデルである東大版 GCM でも物理過程 を格子点で計算している. 他のスペクトルモデルについてもそうであるかどうかは未調査.

系を選ぶことで困難を回避できる.格子点法では数値的な技巧が必要である (らしい).

- 保存量を作ることは出力結果の解釈に使いやすいという物理的な理由と、数値的な発散をおさえやすいという数値的な理由とにより奨励される.格子点モデルの場合、技巧を用いることで保存を維持できる.スペクトルモデルの場合、さほどの技巧を用いることなく保存を維持できる.
- 格子点モデルには非線形不安定がある(aliasing).
- スペクトルモデルの方が、空間微分を含まないだけプログラムが簡単になる、
- スペクトル法はグリッド法よりも境界条件の点で柔軟でない.
- スペクトルモデルはグリッドモデルに比べて水蒸気等の局地的な現象の表現には適さないといわれる。もっとも、グリッドのあらい格子点モデルではスペクトルモデルに比べてさして優れているとはいえない。
- スペクトルモデルでは一点の影響が(本来は影響が及ばない)遠く離れた点
 にも与えられてしまう.
- FFT を用いると、少なくともある程度の解像度までは、スペクトルモデルの 方が格子点モデルよりも速い(らしい).

ちなみに、dcpam5はスペクトルモデルに分類される.

B.10 参考文献

- 気象庁予報部, 1982:スペクトル法による数値予報(その原理と実際).気象庁, 111pp.
- 森口, 宇田川, 一松編, 1956: 岩波数学公式 I. 岩波書店, 318pp.
- 森口, 宇田川, 一松編, 1960: 岩波数学公式 III. 岩波書店, 310pp.
- 一松 信, 1982:数值解析. 朝倉書店, 163pp.
- 森 正武, 1984:数值解析法.朝倉書店, 202pp.
- 寺沢寛一,1983:自然科学者のための数学概論(増訂版).岩波書店,711pp.

付 録C 使用上の注意とライセンス 規定

CREDITS¹ を参照ください.

 $^{^{1}} http://www.gfd-dennou.org/library/dcpam/dcpam5/dcpam5_latest/CREDITS$